
T.HE 8K BASIC-IN-ROM

REFERENCE MANUAL

Sept. 1978

e> Ohio Scientific Inc.

Ohio Scientific 6502 8K BASIC- in-ROM Introduction

Ohio Scientific's BASIC-in-ROM was written by Microsoft, Inc.
and is very compatible with the numerous other BASICS written by
Microsoft including the original ALTAIR 808D and 6800 BASIC, the
Commodore PET BASIC, the Apple floating POINT BASIC, and Radio
Shack Level II BASIC. The 6502 BASIC is considerably faster than
8080 and 6800 BASICS because of the 6502's superior instruction
execution time. It is faster than competitive personal computer
BASICS because it is a 6~ digit implementation of BASIC and Ohio
Scientific machines are typically operated at higher clock speeds
that comparable 6502 based personal computers. As of the
writing of this manual, Ohio Scientific 8K BASIC-in-ROM is con
sidered the fastest floating POINT BASIC available for personal
computers.

The following manual provides detailed information about the
features in the language which are unique in this particular version
of BASIC. It further provides a handy reference fQr the standard
syntax of Microsoft BASIC. It is not intended however, to be a
tutorial or teaching aid. The user is directed to several of any
of the excellent texts on BASIC to learn the language such as
BASIC AND THE PERSONAL COMPUTER by Dwyer and Crithfield which
lS available through most Ohio Scientific dealers.

Ohio Scientific 8K BASIC-in-ROM has been extensively tested
and has been in use for several years. It is believed to be
reasonably bug free, however, no warranty is made for its accuracy
or usability.

8K BASIC-in-ROM ls copyrighted by Microsoft, Inc. The BASIC
I/0 handlers or support code are copyrighted by Ohio Scientific,
Inc. The duplication, copying or publication of the code of the
8K BASIC-in-ROM is strictly prohibited without specific written
consent from Ohio Scientific.

-2-

Ohio Scientific 8K BASIC-in-ROM Reference Manual

Introduction

The following discussion pertains to Ohio Scientific computers
which utilize 8K BASIC- in-ROM in conjunction with an internal video
display interface, specifically, the C2-4P, C2-8P, Superboard II
and Chal l enger lP systems. When the computer is reset, the message
D/C/W/M or simply C/W/M will appear on the screen. D stands for
boot from disk, M stands for exit to monitor, C and W refer to
BASIC options. When the machine is first turned on, the user
always selects C which stands for "cold start". Cold start clears
the work space and initializes the BASIC interpreter. Once the
machine has been running, the user can optionally select W for
"warm start". Warm start is used to restart the BASIC interpreter
when an executable program is present in memory. It can be utilized
specifically when the break key is inadvertently depressed to return
to a program and in instances when the control C has been disabled
for graphics displays for instance. For example, when the Ohio
Scientific Tiger Tank game is running in the computer and the user
wishes to examine the program, he would depress the break key then
the W key which will return him to the immediate mode of BASIC with
his program intact.

Memory Size?

When cold starting BASIC, the computer asks the question
"Memory Size?". By answering carriage return to this question,
the machine performs a memory test such that it finds all usable
memory. It reports the number of bytes available and sets up the
basic work space to use all available memory. The user can option
ally type in a decimal number which corresponds to the upper limit
of the memory he wants BASIC to use. For example, an 8K BASIC-in
ROM computer has 8192 bytes of RAM (approximately 768 bytes are
used for system overhead). If the user wishes to allow BASIC to
utilize 4K thus leaving 4K available for machine code and other
applications, he would answer, 4096 to memory size then carriage
return. This would limit BASIC to utilize the first 4K of memory.
Furthermore, the BASIC memory test would not be implemented,
consequently, memory above 4K would be preserved. Because of
this, the user can preload machine code routines before cold
starting the computer.

Terminal Width?

The next question BASIC asks lS "Terminal Width?". If the
user simply types carriage return to this question, the terminal
width defaults to 72 characters. This terminal width specification
is part of BASIC's drivers. The video display software also con
tains terminal width parameters. These parameters are fixed at
24 characters on the 600 board based systems and 64 characters on
the 540 based systems. The user can, in fact, specify narrower

-3-

screen width in response to the terminal width question. For
instance, the user could answer 20 (carriage return) , so the
terminal width question on a 600 based system would confine the
display width to 20 characters. This option is useful primarily
to limit display width for television sets which are overscanning
and for use in conjunction with narrow width printers. However, a
better solution to overscanning problems of the video display is
to reduce the overscan of the monitor.

LOAD and SAVE Commands

ROM BASIC contains two special reserved words for use with I/0
devices, LOAD and SAVE.

LOAD Command

The LOAD command can be executed in the immediate mode or as part
of a stored program. When the BASIC interpreter encounters a
LOAD command, it switches input from the keyboard to serial input
port l. Input to BASIC continues from this port until the user
depresses the space bar on the terminal or a program modifies a
flag in memory by the statement POKE 515,0 (POKE 515,255 also turns
on LOAD). Serial port lis normally connected to an audio cassette
interface but can easily be expanded to accept input from a modem
or RS-232 terminal in conjunction with or in lieu of the audio
cassette port. The LOAD command in conjunction with the video
cassette interface has the capability to read programs from cassette
and to read in data from cassette files. By t h e addition of hard
ware, the same LOAD command can be utilized to support an external
terminal or modem.

SAVE Command

The SAVE command can be executed in the immediate mode or as part
of the stored program. When the BASIC interpreter encounters the
SAVE command, it routes output to both the video screen and serial
port l . This mode of operation continues unti l a LOAD command is
encountered which automatically clears the SAVE condition. The
serial port is normally connected to an audio cassette output
interface so that the SAVE command can normally be used for saving
programs and storing data in cassette files. By the addition of
hardware, it can also support output to a modem, external terminal
and pri nter. (POKE 517,0 turns off SAVE, POKE 517,255 also turns
on SAVE.)

LOADing and SAVEing BASIC Programs

To SAVE a program on cassette:

l. Rewind the tape.
2 . Type SAVE (carriage return> .
3. Type LIST but not (carriage return)
4. Start the re9order in the record mode.
5. As soon as the leader passes over the tape head, type

(carriage return> .
6. When the listing is complete, turn off the tape recorder

and optionally type LOAD <carriage return) <space bar}
(carriage return) to revert to normal computer operation.

-4-

To LOAD programs which are stored o n tape into the computer,
proceed as follows:

l. Rewind the tape.
2. Cold start the machine or type NEW (carriage r e turn) .
3. Type LOAD but not (carriage return> .
4. Start the tape in play-back mode.
5. As soon as the leader passes over the head, type

(carriage return) .
6. Upon completion of a LOAD, turn off the tape recorder

type (space bar) and then (carriage return) .

Cassette Data Files

The simplest way to store data on cassette is to store the data
imbedded in data statements which have line numbers as part of
the program. Thus, the data comes along with the program when
it is loaded in but requires that the ent ire program be re-stored
when the data is changed. This is not an unreasonable handicap
in small programs. To further simplify the use of data statements
for data storage, BASIC allows the LIST command to be imbedded as
a statement as part of the BASIC program . For example, a short
BASIC program utilizes data in data statements between lines 100
and lines 200. To allow the user to change these data statements,
a portion of the program can have a statement such as LIST 100-200
which when executed will selectively LIST that portion of the
program. And following this statement, it can have a statement
such as PRINT" CHANGE THE ABOVE STATEMENTS AS NECESSARY BY TYPING
A LINE OVER AGAIN": STOP. This statement when executed will prompt
the user to change data statements and will then discontinue program
execution by a break.

Cassette Based Sequential Files

The ~ost sophisticated cassette based data storage technique is
to utilize sequential data files on cassette. To construct a
sequential data file on tape, the program must simply execute a
SAVE command followed by a series of PRINT commands which print
out the desired information. This information will appear on
the video screen and will also be stored in sequential fashion
on cassette. The individual entries will be delineated or
separated by carriage returns. To input from cassette data files,
the BASIC program must execute a LOAD command then execute INPUT
statements. These INPUT statements will be answered by the
cassette instead of the keyboard. This technique is straightforward
with two minor tricks. The first problem is that the programmer
must be certain that the information on cassette is presented to
the computer after each INPUT statement is executed. Obviously,
if the information was outputted from the cassette before the
BASIC program executed an INPUT statement, it would be lost.
This is not a problem in simple programs because the SAVE command
automatically places 10 nulls before each output before it is
placed on cassette. These 10 pad characters will provide sufficient

-5-

delay for normal programs. If time consuming calculations are
performed such as dimensioning a large array, it will be necessary
for the programmer to provide additional delays when the file is
printed out to insure proper timing on play back. The second
problem or trick associated with cassette based data files deals
with noise pulses in the leader portion of the tape and between
data files when the tape recorder is turned on and off. This
situation can be handled effectively as follows. At the beginning
of every data file, the outputting program should place a 72 char
acter string followed by a carriage return. This string will be
utilized as a sync field. The program that then reads the data
file will throw away its first input, that is, it is assumed that
the play back process will start in the middle of this long sync
string which will be discarded. In cases of severe noise, a
beginning of record string can be utilized which must be input
and verified by the INPUT progr~ before it accepts valid data.
This procedure should not be necessary under normal circumstances.

Outputting to Printers

If a printer is connected to serial port 1, the user can directly
LIST programs and send print outs to the printer by executing
the SAVE command followed by the operations desired. The resulting
print outs will appear on the video display and the printer .

Other Devices

The same procedure is utilized for the audio cassette system and
can be directly applied to modems, terminals and other devices
which are placed on serial port 1 in lieu of or in conjunction
with the audio cassette interface.

The following section is a reference manual which characterizes
the syntax of the BK BASIC-in~ROM. This section is not meant
to be a tutorial on the use of BASIC but simply a reference
manual to be used in conjunction with a standard BASIC text book.

-6-

SPECIAL CHARACTERS

Character

@

(shift 0)

Carriage return

Control C

: {colon)

Contol 0

?

Use

Erases line being typed

Erases last character being typed

Must be used after each line typed

Interrupts program execution or listing
returns to command mode.

Allows multiple statements per line

Typing a control 0 once surpresses output
until another control 0 is typed.

? can be used instead of print.

OSI BK BASIC is a "standard" BASIC with additional string handling
capability and I/0 commands, as well as the following features.

OSI BASIC allows multiple statements per line via ":". Next with
out a variable can be used when FOR-NEXT statements are not nested.
END statements are not necessary. Question marks can be used
instead of "PRlNT;". "LET" is optional. No spaces are required in
BASIC. These features allow highly efficient memory usage when
necessary.

Variables can be two characters long. Longer variables can be used
but only the first two characters will be utilized. The first
character must be alphabetic, the second can be alphabetic or
numeric. Long variables can not contain words used by BASIC such
as NEW, SIN, and so on. Since spaces are not necessary BASIC would
interpert a variable such as 11 ANEW as a variable A and the corrrnand
"NEW" and would erase the program.

EXAMPLES:
LEGAL ILLEGAL

A IA
Al #B
AZ TOO
BEQ RGOTO
APPLE NEW 1
TUESDAY FREQUENCY

Note: that variables AZl and AZ2 would be treated the same since
BASIC looks only at the first two characters .

-7-

NAME

LIST

NULL

RUN

NEW

CONT

LOAD

COMMANDS

EXAMPLE

LIST
LIST 100

NULL 3

RUN

RUN 200

NEW

CONT

LOAD

OPERATORS

SYMBOL EXAMPLE

A=lO ·=
LET B=lO

C=-B

1' (Shift/n) Xt4

* C=A*B

I D=L/M

+ Z=L+M

COMMENTS

Lists program
Lists program from line 100. Control
C stops program listing at end of
current line.

Inserts 3 nulls at the start of each
line to eliminate change return
bounce problems. Null should be 0 ~
when entering paper tapes from Teletyp~
readers. When punching tapes Nul~=3.
Higher settings are required on faster
mechanical terminals.

Starts program execution at first line.
All variables are reset. Use an
immediate GOTO to start execution at
a desired line.

GOTO 200 with variables reset.

Deletes current program.

Continues program after Control C or
STOP if the program has not been modified.
For instance a STOP. followed by manually
printing out variables and then a CONT;
is a useful procedure in program debugg
ing.

Used in cassette and Disk BASIC only.

cm~MENTS

LET is optional

Negation

X to the 4th power

CtD with C negative and D not an integ~r
gives an FC error.

Multiplication

Division

Addition

- 8-

J=255 .1-X Subtract ion

<> 1 0 I F A< >B THEN 5 Not equal

> B>A B greater than A

< B<A B 1 ess than A

< =, = < B<=-A B 1 ess than or equa 1 to A

=>·t)':: B=>A B greater than or equal to A

AND IF B>A AND A>C
THEN 7 If both expressions are true then--.

OR IF B>A OR A>C
THEN 7 If either expression is true then--.

NOT IF NOT B>A THEN 7 If B<=A then--.

AND, OR, and NOT can also be used in Bit manipulation mode for per
forming Boolean operations of 16 bit 2s complement numbers (-32768 to
+32767)

EXAMPLES
EXPRESSION
63 AND l6
-1 AND 8
4 OR 2

10 OR 10
NOT 0
NOT 1

OPERATOR EVALUATION RULES:

RESULT
16
8
6

10
-1
-2

Math statements evaluated from left to
right with* and I evaluated before+ and -
Parentheses explicitly determine order of
evaluation.

Precedence for evaluation

B ~ parenthese

3) Negation
4) * I
5) + -
6) =,<), <,>, <=, >=
7) NOT
8) AND
9) OR

-9-

STATEMENTS

In the following examples

V or W is a numeric variable, X is a numeric expression,
X$ is a string expression, I or J is a truncated integer.

NAME

DATA

DEF

DIM

END

FOR, NEXT

GOTO

EXAMPLE

10 DATA 1 ,3, 7

10 DEF FNA (V)=V*B

110 DIMA (12}

999 END

1 0 FOR x=. 1 to 1 0 STEP .1
20u..-----
30 NEXT X

50 GOTO 100

COMMENTS

Data for READ statements must
be in order to be read. Strings
may be read in DATA statements.

User defined funct1on of one
argument.

Allocates space for Matrices
and sets all matrix variables
to zero. Non dimensioned
variables default to 10.

Terminates program (optional}

STEP is needed only if X is
not incremented by 1. NEXT X
is needed only if FOR NEXT
loops are nested if not NEXT
alone can be used variables
and functions can be used in
FOR statements.

Jumps to line 100

GOSUB, RETURN 100 GOSUB 500 Goes to subroutine, RETURN
goes back to next line number
after the GOSUB

. 500 . . . •

IF •.• THEN

IF ... GOTO

ON ... GOTO

600 RETURN

10 If X=S THEN 5 If the statement is true
10 If x=S THEN PRINT X
10 If X=S THEN PRINT X:Y=Z Then the following will be

executed including multiple
statements of that line.

10 II?" X=S GOTOS Same as if THEN with line
number

100 ON I GOTO 10, 20, 30 Computed GOTO

If I=l then 10
If I=2 then 20
If I=3 then 30

, 1"1

PRINT

READ

REM

RESTORE

STOP

FUNCTIONS

Function

ABS (X)

INT {X}

RND {X}

SGN {X}

SIN {X}
COS {X}
TAN {X}
ATN {X}

10 PRINT X
20 PRINT "Test"

Prints value of expression
Standard BASIC syntax with
, ; " formats

490 READ V, W Reads data consecutivel~ from
DATA statements in program

10 REN

500 RESTORE

100 STOP

Comment

This is a comment for non
executed comments.

Restores Intial values of
all DATA statements

Stops program execution re
ports a BREAK. Program can
be restarted via CONT.

For X=>O ABS(X)=X
For X<O ABS(X}=-X

INT (X} =largest integer less than X

Generates a random number between 0 and 1

R~D (0) generates the same number always

RND (X) with the same X always generates
the same sequence of random numbers
NOTE {B-A}* RND (1 }+A generates a random
number between B and A

IF ~0 SGN(X)=l
IF X=<O SGN{X}=O

Sine of X where X is in radians
Same for COS, TAN, and ATN (ARC TAN)

SQR {X} Square root

TAB (I} Spaces the print head I.

USR (I) See I/0 section

EXP {X} E~ where E is 2.71828

FRE {X} Gives number of Bytes left in the workspace.

LOG {X) Natural LOG to obtain base 10 logs use
LOG(X)/LOG (10)

-11-

POS (I)

SPC (I)

STRINGS

Gives current location of terminal print
head.

Prints I spaces, can only be used in print
statements.

Strings can be from 0 to 255 characters long. All string variables
end in $ ex. A$1 89~ HELLO$.

Strings can be dimensioned equated, printed~ r.ead from Data statements,
etc.

STRING FUNCTIONS

ASC (X$)

CHR$ (I) p,o" .,

"i'f>0? {_/'

LEFT$ (X$, I)P' .;l~6~
RIGHT$ (X$, I)

MID $ (X$, I, J)

LEN (X$)

STR$ (X)

VAL (X$)

Returns ASCif value of first character in
string.

returns a I character string equivalent
the ASCII value above.

Gives left most I characters of string X$
Gives right most I charactersof string X$

Gives string subset of string X$ starting
at rth character for J characters. If J is omitted,
goes to end of string.

Gives length of string in bytes.

Gives a string which is the character
representation of the numeric expression
of X. Example X=3;l

X$=STR$(X)
X$= .. 3 .1 ..

Returns string variable converted to
number. Opposite of STR$(X)

-12-

I/0

The following features of OSI 8K BASIC are usefull primarily for
I/0 control. The user should be extremely careful with these state
ments and functions since they manipulate the memory of the computer
directly. An improper operation with any of these commands can
cause a system crash, wiping out BASIC and the users program, thus
requiring a complete reload of the computer.

§TATEMENT I FUNCTION

PEEK (I)

POKE I ,J

WAIT I ,J,K

COMMENT

Returns the decimal value of the
specified memory or I/0 location.
(Decimal}
Example:

X=PEEK (64256}
Loads variable X with the 430 Board's
A/D converter output. (FBOOhex}

Loads memory location I (decimal} with
J (Decimal) I must be between 0 and
65536 and J must be between 0 and 255
Example: 10 Poke 64256, 255 loads FBOO
with FF (Hex} thus loads the 430 Board's
D/A port 0 such that its output is +2
volts.

Reads status of m.emory location· I
(Decimal) exclusive OR's with K then
AND's the result with J until a non
zero result is obtained. If K is omit
ted, it is zero.

Wait is used for fast service of input
status flags.
Example: Wait X,l will wait until Bit
zero of memory location X goes low then
BASIC will continue.

The high speed servicing of flags via the WAIT command allows the
programmer to service medium speed devices such as line printers or
industrial equipment directly in BASIC.

USR: The USR function allows linkage to machine language routines
such as ultra-fast device handlers, etc. The USR function calls
only one machine language routine and can pass one integ~r value to the
machine language routine so that 65,000 actual user routines are possible.

The beginning of the user subroutine must be poked into 23Ehex (low)
and 23Fhe~ (high}. The USR routine can use up to 8 levels of sub
routines ll6 stack locations} without page swapping.

·The USR function can obtain the argument of the function by calling
the routine pointed to by 6 (low) and 7 (high). This routine will

-13-

place the value of the argument in AE(bex) (high part) and AF(bex)
(low part). To pass a value back to BAsiC, the high part is placed
in A and the low part is placed in Y and the subroutine pointed to
by 8 and 9 should be called. If this function is not called USR
(X) will equal X. An RTS returns from USR to BASIC. All registers
can be modified by the user routine without affecting BASIC, however,
no page zero locations can be modified! The POKE instruction can
also be used to change the USR function call.

INTERRUPTS

For Interrupting routjnes of any significant length, page zero and
page one should be swapped out to higher memory, or memory partition
ing (Al6 and A17 on late model OSI memory boards) should be used.

CONVERTING OTHER BASICS TO RUN
ON OSI 6502 BK BASIC

MATRIX subscripts: Some BASICS use []
OSI BASIC used ().

Strings:

OTHER

DIM A$(I,J)
A$ (I)
AS (I ,J)

OSI

DIM A$ (J)
MID$ (A$,I, 1)
MID$ (A$,I,J-I+l)

Multiple assignments: B=C=O must be rewritten as B=O:C=O. Some
BASICs use/to delimit multiple statements per line.Use 11

:
11

• Some
BASICs have MAT functions which will have to be rewritten with FOR
NEXT loops.

DD

FC

ID

NF

OD

OM

.ov

SN

RG

us

/~

CN

LS

OS

ST

TM

UF

TABLE 2-l. BASIC ERROR CODES.

CODE DEFINITION

F ,.,...

I.,..

N"-

OJ~"

o.,

oll6

s-'

R \

ulllw

/~
c~

L.

o6.1
s!:ll

T.,

u,

Double Dimension: Variable dimensioned twice.
Remember subscripted variables default to
dimension 10.

Function Call error: Parameter passed to
function out of range.

Illegal Direct: Input or DEFIN statements can
not be used in direct mode.

NEXT without FOR:

Out of Data: More reads than _DATA

Out of Memory: Program too big or too many
GOSUBs, FOR NEXT loops or variables

Overflow: Result of calculation too large
for BASIC.

Snytax error: Typo, etc.

RETURN without GOSUB

Undefined Statement: Attempt to jump to
non-existent line numper

Division by Zero

Continue errors: attempt to inappropriately
continue from BREAK or STOP

Long String: String longer than 255 characters

Out of String Space: Same as OM

• String Temporaries: String expression too
complex.

Type Mismatch: String variable mismatched
to numeric variable

Undefined Function

-15-

Oblo Scientific BASIC for 8502.
II version. 3.2

Commands

CONT LIST NEW NULL RUN

Statements

CLEAR DATA DEF DIM END

GOTO GO SUB IF ... GOTO IF ... THEN INPUT

NEXT ON ... GOTO ON ... GOSUB POKE PRINT

REM RESTORE RETURN STOP

Expressions

Operators

·, +, *, /,t, NOT, AND, OR,?,<,<>, > =,< =,= RANGE 10·32 to 10+32

Variables

A, B, C, ... , Z and two letter variables
The above can ali" be subscripted when used in an array
~tring variables use above names plus $, eg. A$

Functions

ABS(X) ATN{X) COS(X) EXP(X)

LOG(X) PEEK(I) POS(I) RND(X)

SPC(I) SQR(X) TAB(I) TAN(X)

String Functions

FRE(X) INT(X)

SGN(X) SIN(X)

USR(I)

FOR

LET

READ

ASC(X$) CHR$(1) FRE(X$) LEFT$(X$,1) LEN(X$) MID$(X$, I,J)

RIGHT$(X$,1) STR$(X)

Special Characters

0 Erases line being typed, then provides carriage return, line feed.
+- Erases last character typed.
CR Carriage Return •• must be at the end of each line

Separates statements on a line.

VAL(X$).

	Ohio Scientific 6502 8k BASIC-IN-ROM Introduction
	Ohio Scientific 6502 8k BASIC-IN-ROM Reference Manual
	Introduction
	Memory Size?
	Terminal Width?
	LOAD and SAVE Commands
	LOAD Command
	SAVE Command
	LOADing and SAVEing BASIC Programs
	Cassette Data Files
	Cassette Based Sequential Files
	Outputting to Printers
	Other Devices

	Special Characters
	Commands
	LIST
	NULL
	RUN
	NEW
	CONT
	LOAD

	Operators
	Examples
	Operator Evaluation Rules

	Statements
	DATA
	DEF
	DIM
	END
	FOR-NEXT
	GOTO
	GOSUB-RETURN
	IF-THEN
	IF-GOTO
	ON-GOTO
	PRINT
	READ
	REM
	RESTORE
	STOP

	Functions
	ABS()
	INT()
	RND()
	SGN()
	SIN(), COS(), TAN(), ATN()
	SQR()
	TAB()
	USR()
	EXP()
	FRE()
	LOG()
	POS()
	SPC()

	Strings
	String Functions
	ASC(X$)
	CHR$(I)
	LEFT$(X$,I)
	RIGHT$(X$,I)
	MID$(X$,I,J)
	LEN(X$)
	STR$(X)
	VAL(X$)

	I/O
	PEEK(I)
	POKE I,J
	WAIT I,J,K

	Interrupts
	Converting Other Basics to Run on OSI BASIC
	BASIC Error Codes
	Summary

