
INGPEEKING and POKE
THE

RPMZ-80K

pays

awe

wy Se_
=

to; a
A gineae YOUR PROGRST

PEEKS and POKESAVIDEO RAM ARE
APEDATA STORAGE on TAPE.plus PROGRAMS

PEEKING and POKEING
THE

SHARP MZ-80K

copyright © G.P.Ridley 1982

ALL RIGHTS RESERVED.

No part of this publication may be reproduced by

any means without the prior permission of the Author.

The only exceptions are as provided for by the

Copyright (photocopying) Act or in order toenter

the software contained herein onto a computer for

the sole use of the owner of this book.

First published 1982

Second impression 1982

PUBLISHED BY:-

D.C.BRENNAN Eng.

14 North Western Avenue
Watford Herts. WD2 6AE

Foreword

In this book I hope to aid the beginner and average

hobbyist, in progamming and understanding the SHARP MZ-80K.

All the popular microcomputers on sale today besides their

operating manual, which is supplied at time of purchase,

have other publications written about them to help the

beginner to computing extend his knowledge of that particular

micro. If one visits computer exhibitions or bookshops he

will see that several books abound for all the popular

makes of home computers with the exception of one, the

SHARP MZ-80K.

There appears to be a host of books aimed at those

higher up the ladder of knowledge regarding home computers,

but surprisingly little written for those who have read

their BASIC manuals and wish to climb that same ladder

but simply need a leg up. I hope this book will go a little

way at least to help you on that first rung, and maybe

other books will follow based on the MZ-80K.

Throughout this book references will be made to the

BASIC manual supplied with your SHARP, so please keep it

handy.

he cursor control characters used in listings

throughout this book will be shown as follows:-

id will be clear screen and cursor to top left

[q cursor home without clear screen

(4 cursor down

in " "cursor up

a cursor left

D cursor right

Contents

1 ROM & RAM

The Memory Layout Explained

2. FEATURES OF BASIC SP 5025
2.1 Basic Flags

2.2 Personalising Your Basic

2.3 Cursor Positioning

2.4 Tone Generator

2.5 Video Ram Area

Hangman Program Listing

3 STYLE YOUR PROGRAMS

3.1 Peeks and Pokes

3.2 User Prompts

Connect Four Program Listing

4 PROGRAM TIPS

4.1 Decimal Aligning

4.2 Logical Operators

4.3 Protecting Programs

5 CONVERTING PROGRAMS

Converting Program Listings

6 SORTING DATA

Sorting Routines

7 DATA TAPE HANDLING

7.1 Address List Program

7.2 Stock Control Program

APPENDIX

12

13

15

18

20

23

26

30

31

34

35

36

38

41

44

54

61

1

ROM & RAM

Some knowledge of how a computer works is helpful if

one is going to understand something about PEEK's and POKE's

that one sees written in programs. If you find this chapter

is heavy going the first time round, do not be put off as you

can alwaysrefer back to it later.

As you know the computer's memory is made up of a number

of bytes, some of which are in ROM, and the remainder in RAM.

On the Sharp MZ-80K the Monitor SP1002 is in ROM.

ROM stands for Read Only Memory, and that is precisely all

the computer can do with it, read the instructions contained

within the area that the ROM resides.

On the MZ-80K, when you switch on, the screen displays

MONITOR SP-1002 , this ROM takes up 4 Kilobytes of memory,

which is equal to 4096 bytes. |

Now that the computer is switched on, you LOAD your

BASIC tape, all 14 Kbytes of it. This loads into RAM, which

stands for Random Access Memory, which unlike ROM means that

not only can the computer read what is in this part of memory,

but it can be changed to suit ones needs.

This loading of Basic each time one switches on the Micro

may appear to be laborious, especially as you do not have to

do it with other popular Micros as their ROM contains all the

Basic language instructions already. But bear in mind that it

cannot be altered easily, as in our case with the Sharp.

If you want to add extra instructions, as in the case of the

"PRINT @" statement described later on, or want to run ina

different language other than Basic, such as FORTH, PASCAL,

FORTRAN etc., Or simply want to use one of the many TOOLKITS

which are available, you have to physically take out or add

chips to the printedcircuit board within the computer. And then

you can only add what is commercially available, at extra cost,

each time. You certainly cannot add what you want to, only what

others would like you to. |

If you really get hooked on computing and would like

to write programs using another language, all you have to

do is LOAD a tape containing that particular language.

There is no need to change parts of your Sharp, it is simply

written into the RAM area of memory, which is empty and

waiting each time you switch on. So do not become anxious

about the 14% minutes it takes to load Basic each time,

because you have a certain advantage over other users of

micros.

Perhaps a word on "TOOLKITS" is called for. Unlike their

name suggests, these are not mixture of small screwdrivers

and pliers etc., but tapes of useful additional commands

added to the BaSic ones you already have. These tapes are

loaded after Basic, and usually you can SAVE both the BASIC

and the TOOLKIT back on to one tape, as this then means

you only load one tape at switch on which would contain

both the Basic and the extra commands in TOOLKIT.

Some of the additional commands that are available

are as follows:-

APPEND. Allows you to join one program to another, providing

the second is higher line numbered.

AUTO. This automatically numbers your program as you write

each line. The starting line number and the increments can

be altered. 100,10 would start numbering at line 100 and

continue with 110,120 etc.

RENUMBER. You probably know that it 1S good practice to

number your lines in increments of 10, so as to leave space

for additional lines to be squeezed in. But even then you

may find that you need more lines than you have room for.

With this command you can RENUMBER at any time such as:-

RENUMBER1OO,10 will renumber the program starting at 100

and incrementing in 10's. RENUMBER200,10 would start at

line 200.

Even when you have finished writing your program and debugged

it, the line numbers may not be evenly incremented, so a

quick RENUMBER, and it is very quick, will make it look

professional and neat.

TRACE. While debugging, which we all have to do, some more

than others, a useful function is the TRACE command. This

slows down the running of the program and displays the current

line number on the screen. You can see where you are in the

program at all times. |

Most Toolkits contain many more useful functions than

I have mentioned, and are certainly worth considering, as it

makes the programmers life a lot easier.

The layout of all the bytes in your MZ-80K is listed

on page 118 of the Sharp Manual, it's called the Memory Map.

If you look at the map you will see numbers down the left

Side of the diagram. These numbers are in Hexadecimal, which

if you did not know, are numbers to the base of 16. The everyday

numbers we normally use are Decimal, to the base of 10.

I won't dwell too much on this, as throughout this book

whenever a Hex number is mentioned the Decimal equivalent

will be shown. There is a conversion table in the Appendix

at the end of the book, and it will certainly help you if

you can get acquainted with this system of numbering,

especially if you intend to go on to using Assembler Language.

Nevertheless it will not stop you understanding this book

if you feel it is too complicated at this stage.

As you will see, the first section of the Map is for

the bytes numbered 0000 to 1000 Hex. (4096 decimal), these

bytes are in ROM and is where the Monitor sits in memory, and

1s coupled to the next area from 1000 to 1200 Hex. (4608 decimal),

which is the work area for the Monitor. These two sections

Spring into life as soon as you switch on, and are the main

control areas for whatever language you are uSing. .

The third section is from 1200 to 6000 Hex. (24576 decimal),

is a little vague, as it should be shown as three differing

sections. In actual fact the Basic tape when loaded, occupies

memory from 1200 to 4200 Hex. (16896 decimal), and it's work

area from 4200 to 4805 Hex. (18437 decimal).

10

Your programs in Basic, either those you type in directly

or ones loaded from tape, start loading from the end of

the work area at 4806 Hex (18438 dec) and grow upwards.

If your memory is 48Kbytes, this area extends up to CFFF Hex

53247 (dec).

Above this figure is the Video Ram area which is used for

mapping out the screen. In a lot of programs which contain

fast moving graphics, you will see a lot of POKEing going

on in the area between 53248 and 54247 Decimal.

Above these areas are sections which deal with Input and

Output controls and the Disc operating system.

On page 119 of the manual is a brief description of

linkage to Machine language. It actually looks quite confusing

so we Shall try to clarify it somewhat. To use the LIMIT

command is to block off the top of memory for the use of

a Subroutine in Machine code, which you may wish to write

into a program, but more on that later.

Your BaSic programs use the uppermost part of memory for

storing variables that are being used during the running

a program. They gradually grow downwards and would eventually

hit the end of the program listing, ‘which then results in an

MEMORY error being displayed. Therefore any Machine code

routine must be protected from being overwritten by the

Basic program running. So all that happens is, that you alter

the top of memory to a lower position and leave room right

at the top for your Machine code routine.

These routines are not the easiest of programs to write.

You will have to gain some knowledge of Assembler language.

You cannot POKE any number you wish, it has all got to

be coded. But the facility is there if and when you need

it, and very useful it is, we will see the LIMIT command

used later.

Many of the ready to run games programs contain this LIMIT

command with a machine code routine, but problems can arise

when you wish to load the next program. If you see a Memory

error message displayed the probable cause is that the top

of memory has been protected by the previous program. The

best method of checking this, is to type PRINT SIZE, and if

a lower figure than usual is shown then this is probably the

cause. You must now clear memory. Type BYE, and the display

will return to the Monitor, and MONITOR**SP1002 should be on |

the screen. Now enter GOTO$S1200(remember the dollar sign it

is important) and the correct number of Bytes should be

displayed. You can now LOAD the next program as usual and

this time it should load with no difficulty.

MEMORY MAP 48 K (not to scale)

FFFF 65535
H , DISC OPERATING SYSTEM D
E F000 a 61440 £E
X EFFF INPUT OUTPUT 61439 C
A E000 CONTROLS 57344 I
D DFFF 57343. M

5000 VIDEO RAM AREA 3048 OA

t CFFF 53247.
M
A

L PROGRAM IN BASIC

4806 18438

4805 18437
BASIC WORK AREA

4200 | 16896

aLFF 16895

BASIC SP 5025

1200 | 4608

TIFF MONITOR WORK AREA 4607

1000 4096
OFFF 4095

MONITOR

0000 + > 0000

12

2

Features of BASIC SP 5025

2.1 Basic Flags

The MZ-80K is supplied with one copy of SHARP BASIC

SP 5025, but tapes can break or corrupt if placed too near

a magnet, such as a television or Hi-Fi speaker, so it's a

good idea to make a security back-up copy.

In the Basic SP 5025 tape is a protection flag which x RK

is set so that one cannot PEEK (look at) the values of bytes

in memory. Tt is a good idea when making a back-up copy

of Basic, to POKE this flag to off. It is a lot easier than

it sounds.

Load Basic as usual, now place a new cassette in the

drive, the screen will be displaying 'READY'.

Enter POKE 19167,1 and press 'CR'.

The display will show 'READY' again, but you have just turned

the protection flag off, and now the value of any byte will

be accessable to you.

Now enter this one line program:-

18 USR(33):USR(36)

Now enter 'RUN' followed by 'CR'. The message on the screen

will ask you to press RECORD and PLAY. Do this and in about

three minutes you will have a security copy of Basic.

It is probably good practise to use this tape when loading

Basic, and keep the original ina safe place, away from any

magnetic fields.

When you SAVE a program on tape there is additional

information recorded at the beginning of the tape before

your actual program. You are not made aware that it is happening,

but all programs have such data recorded into the header

of the program, such as the starting address and the length

of that particular program. There is also a facility to make

the program RUN automatically as soon as it has finished

loading the next time you use it.

**k KA flag is just like a Traffic signal, stop or go.
It is only a byte really that has a value just like
any other. By POKEing it with another number changes
it's value just like a signal from red to green.

This is achieved by entering POKE 19682,1 followed by ‘CR'

before you SAVE the program to tape. After this you should

SAVE the program as described on page 92 of your Sharp

Manual, in the normal way. It will then RUN whenever you

load that program.

Some of you may have purchased programs on tape and

wanted to look at the listing, or simply changed some of

the effects on the screen, but have been unable to do SO,

as when you enter LIST all that happens is a return to the

READY message. This is because another flag has been switched

On and recorded onto the header of the program. To switch

this flag off enter POKE 1968%,8 and 'CR'. Now the program

should LIST in the normal way. The reason this protection

was entered on the tape was to stop people buying a program

and running off copies to sell to others, thus deprieving

the authors and software firms from royalties and profits.

This flag also stops one SAVEing the program too.

SO DO NOT RUN OFF COPIES OF PROGRAMS SOLD TO YOU, AS IT

IS A BREACH OF COPYRIGHT.

2.2 Personalising your Basic

A routine which may be of interest is that all the

Ssreen messages such aS:- READY, BREAK, SYNTAX ERROR etc.,

can be changed to anything you wish, providing that you

do not exceed the number of characters in the message you

wish to alter.

Let us take a look at READY.

If you have not already done so turn off the PEEK protect

flag by entering POKE 19167,1 followed by '‘'CR'.

Now enter this program:-

1g FOR X = 4857 TO 4861

20 PRINT X, PEEK (X) ,CHRS (PEEK (X))

3¢ NEXT X

RUN

On the screen should be printed:-
4857 82 R

4858 69 E
4859 65 A
4869 68 D
4861 89 4

READY

13

14

This is where the message READY resides in memory, in

locations 4857 to 4861 incluSive.

Let us assume that your initials are CP. You could alter the

message from READY to OK CP.

Look up the table of ASCII codes on page 121 of the

Sharp manual. Do not confuse these with the DISPLAY codes

on page 117, they are different. The code for O is 79, K is

75, SPACE is 32, C is 67 and P is 8@. If you POKE locations

4857 to 4861 with the above values the OK CP will be displayed

each time instead of READY.

Enter NEW and 'CR' then enter this program:-

1g FOR X = 4857 TO 4861

29 INPUT A

39 POKE X,A

4g NEXT X

RUN

The computer will require the first number to be entered.

On the screen should be:-

?

So enter number 79 followed by Carriage Return, 'CR',

Do this for the five values you wish to enter, the screen

should be displaying:-

And now each time the computer returns to READY, OK CP

will be printed instead. In fact you have actually changed

five Bytes of the Basic memory. Obviously one can change the

five Bytes to anything one wishes, but you will have to look

up the ASCII codes you require. Try it, you will not corrupt

the memory if you only POKE to these particular addresses.

If you wish to keep this feature, you will have to record

it onto your back-up copy of the Basic, as described earlier

by entering the one line program, after clearing the last

program by entering NEW.

1¢ USR (33) :USR(36)

NEVER RECORD OVER THE ORIGINAL BASIC TAPE SUPPLIED WITH THE

SHARP.

For obvious reasons it should be kept in it's original state,

use your back up copy for any changes you make.

All the screen messages are held in memory locations

from 4834 to 4950, and all you have to do is alter line 19

in the program which PEEKed the READY message to see all of

them. After each word you will find the next Byte has a value

of 13, although this code is not listed in the ASCII codes,

it actually tells the computer to perform a carriage return

after printing the message, so never change the value of this

Byte. Remember by using PEEK you cannot change any part of

memory, so no harm will be done. Even if you POKE the wrong

location, or POKE the incorrect value, no permanent damage

will occur. The worst that can happen is that the program

hangs or crashes, which means it simply will not runcorrectly.

If this happens reload Basic, and all of memory will return

to it's original condition, do not be afraid to experiment.

After listing the screen messages you will notice that

most of them refer to errorssuch as:- SYNTAX, MEMORY, MISMATCH

and the like. You can alter them if you wish, but remember

that their original meaning should be reflected in:whatever you

change them to, otherwise you may not understand them at some

future time.

2.3 Cursor Positioning

The 'PRINT AT' statement, which positions the cursor

anywhere on the screen can be found in Sharp Disc Basic, but

is unfortunately absent from Tape SP 5025 Basic. At the moment

to print a prompt at the bottom of the display one would use a

line such as:-

108 PRINT"IHWNNNANAINNNANSPPPPAPRESS ANY KEY"
Which equals 23 arrows down and 6 arrows right.

If you use the alternative 'PRINT@" statement, which can be

entered as "?@" , it becomes much simpler and saves on memory.

108 PRINT@22,5;"PRESS ANY KEY" |
The reason 22 was entered as the line position is that the top

line is considered as @ and the bottom line on the screen is 24.

Similarly the columns are from @ to 39, so column 6 would be 5.

This is Similar to the TAB function explained on page 49 of the

Sharp Manual.

15

16

To add this PRINT@ statement to your Basic the following

program should be entered, afterwhich you should rewind

your back up copy Basic and RUN, and the new command will

be recorded for future use. You haven't made a back up

tape yet? Well you can now, this routine will prove very

useful. |

When you have typed in this program, go over it checking

that it is correct, especially the numbers in the DATA lines

along with all the commas. Also ensure that you have not

placed any commas after the last item in each DATA line.

1 POKE 19167,1
2 DATA295,139,22,64,69,28,295,169,25
3 DATA123,59,114,17,295,154,22,44,295
4 DATA169,25,123,59,113,17,195,69, 28
5 FOR X = 154985 TO 15431:READ A
6 POKEX,A:NEXTX
7 POKE7221,45:POKE7222,69
8 USR (33) :USR(36)

RUN

You will be prompted to press RECORD.PLAY.

After about 3 minutes the tape should stop and you will

have added this extra command to Basic. To check how it

works clear the screen and enter:-

2?@29,18;"OK" followed by the CR key

OK should be printed at the bottom of the screen in the

middle.

Please remember that the first number after the ?@ refers

to the line number, and must be in the range @ to 24.

Similarly the second number after the comma, is the column

and it's range is ~ to 39.

These two numbers do not have to be actual numbers, they

can be variables such as X and Y, which would have a value

allocated to them.

Type in NEW and enter this program:-
1g 2 "IC"

29 FOR Z = 1 TO 199
30 Y = RND(1)*12
4g X = RND(1)*39
50 2@Y,X;"*"

69 NEXT Z

79 2@13,¢

You will see stars printed at random over the top half of

the screen. The printing is done in line 5@ at positions

designated by variables Y and X. These two variables are

given values each time the program runs through lines 39

and 48 , a total of 19@ times because of the loop in lines

28 and 6@. All line 7@ does is to move the cursor down

past the displayed area, so the READY message does not get

printed in the top half of the screen. Had the last value

of Y been randomly selected as 2 or 3 on the last time

through the loop, the READY message would have been printed

one line lower in the displayed area. _ |

Another point about the ?@ statement is that it truncates

the value given to the variables used, in this case X and Y.

If the random number given to Y was 11.021497, the ?@ would

consider the value as a whole number equal to 11. Therefore

the INT statement that you often see used in RND program

lines such as, X = INT(RND(1)*12), is not necessary.

Enter NEW and type in this program which generates

patterns:-

1g ~=PRINT"Q"
29 FOR A = 1 TO 5

38 READ D
4g FOR B = 1 TO 199
59 AS = CHRS(D)
69 FOR C = 1 TO 2
79 Y = RND(1) ¥*12+1
89 X = RND(1)*2¢@+1
998 PRINT@Y,X;AS

198 PRINT@24-Y,X;AS
118 PRINT@Y,49-X;AS
128 PRINT@24-Y,49-X;AS
138 AS =" " | (note space between quotes)
149 NEXT C,B,A
158 RESTORE:GOTO29@

16@ DATA167,172,149,112,124

You will need to enter SHIFT and BREAK to stop the program.

You may prefer to omit the space in quotes in line 13, so that

AS= "", Try experimenting by changing the numbers in the

DATA statements in line 169% . They are listed in the ASCII

codes on page 121 of the Sharp manual.

17

18

2.4 Tone Generator

Another variation on Basic which may be of interest,

is when the READY message is displayed, the Sharp plays

some notes. In thedirect mode type in:-

POKE4684,8 and CR

You should have heard eleven notes played in succession.

The 2 bytes of memory controlling this feature are 4684

and 4685. You can experiment by typing in different numbers

after the comma. Type in:-

POKE4685,26 and CR

That was different again.

Mind you I think these notes might drive the other members

of your household slowly mad, being played each time READY

is displayed.If you like the idea of an audible as well

as a visual prompt for READY try this:-

POKE4684,9:POKE4685,9 and CR

That should give you a single note, which sounds each time

the computer returns to READY. This tone also sounds when

error messages are screened, which could prove useful.

You can keep this feature on your Basic back up tape by

entering the one line program:-

USR(33) :USR(36)

Do not forget to rewind the tape first.

To turn off the tones and return the 2 bytes to their

Original values enter:-

POKE4684,254: POKE4685,18

While on the subject of sound, the tone generator on

the MZ-80K is very powerful. Besides the MUSIC statement

and the USR(62) command, a large variety of noises can be

executed.

Enter this short program, it should sound similar to an old

American Police siren:-

1g B=3
28 FORC =1T05
38 FOR A = 190 TO 1 STEP -1
48 POKE4513,A
58 POKE4514,B
68 USR(68)

70 NEXT A
88 FORA = 1 TO 109
98 POKE4513,A
108 POKE4514,B
119 USR(68)
126 NEXT A,C

RUN

Try changing line 18 to B = 8 and hear the difference.

You will see that line 5% uses the value of B to POKE

into location 4514, as this byte is responsible for the

main pitch of the note.

A more modern Police siren sounds like this:-

1g B = 3
20 FOR C = 1 TO 19
39 FOR A = 258 TO 1 STEP-7
4Q POKE4513,A
58 POKE4514,B
68 USR(68)
78 NEXT A,C

RUN

Try changing the STEP value in line 38 for a longer or

Shorter note.

I have deliberately used one statement per line for clarity.

When writing your own programs, it will save time and memory

if you enter several statements on each line separated with

colons

The next example could be added to the STARTREK program,

it simulates the Short-wave transmissions often associated

with space noise.

12 FOR A = 1 TO 209
20 B = INT(RND(1) *2@)
38 POKE4514,B
49 USR (68)
52 FOR C = 1 TO 25:NEXT C,A

RUN

There are numerous combinations that can be used to create

different tones. Experiment using the 2 addresses 4513 and

4514, but don't exceed 30 on 4514, as it becomes a very low

note indeed.

19

20

2.5 Video Ram Area

As you already know, the POKE command allows one to

place a value in a memory location. These values can be

any number between @ and 255.

Part of the Sharp memory is allocated the Video Ram area,

and the first 1@0@@ bytes of this area are used for mapping

out the screen, that is 25 lines of 4@ characters, all 1999

of them is stored in locations 53248 (top left of the screen)

to 54247 (bottom right). If you clear the screen, so that

the cursor is on the top line, and enter POKE54247,26 followed

by CR you will see the letter Z has been printed in the

bottom right hand position of the screen. However the cursor

has returned to near the top of the screen, which demonstrates

that by POKEing to the screen area the position of the cursor

remains unchanged. The characters, along with their codes

are listed under the Display Code Table on page 117 of the

Sharp manual, you will see that the letter corresponding

to code 26, which we just used, is the letter Z. The Display

Code is only used when you are directly POKEing to the screen

within the range 53248 to 54247, do not confuse it with the

ASCII codes on page 121. To begin with, when writing your

Own programs, it might be a sensible idea to use graph

paper to map out the screen and it's positions.

The following program uses direct addressing to the screen, it

is fairly simple and should give you an example of how the

POKEing is carried out.

It is a typical Alien type program, but REM statements

have been included, so that you will know which part of

the program does what. These can of course be omitted in

your listing without affecting the running of it.

1g GOSUB1199
20 DG = @

38 DIM M(8,3)
49 REM
58 REM---STARTING POSITIONS OF ALIENS---
68 REM
78 DATA533907,0,40,53393,8,39,53642,f,-1
88 DATA53873,9,-41,53907,8,-40,53861,8,-39
99 DATA53613,9,1,53381,8,41
108 FOR I = TO 8
118 FOR J = 1 TO 3
12@ READM(I,J)

139
14g
158
169
176
189
199
200
216
229
236
246
250
260
272
280
299
396
31g
329
339
349
358
360
372
380
399
4 BD
419
429
439
449
459
469
479
48g
499
582
519
529
539
549
559
560
572
589
599
628
61g
626
630
64g
659
662
676
680
696

NEXT J,I
INPUT"WWWSPEED (1T09)";S
IF(S<1)+(S>9) THEN GOTO 149
SP = INT(2Q9/S)
PRINT "(}"
REM
REM---PRINT SQUARE ON SCREEN--~
REM
FOR X = 6 TO 72
SETX,§
SETX, 34
NEXT X
FOR Y = § TO 34
SET6,Y
SET72,¥
NEXT Y
H = Q
IF RND(1)>.9THEN GOTO 329
GOTO 309
F = Q
X = RND(1)
REM
REM---POSITION OF YOUR SHIP---
REM
POKE53627,199
REM
REM---ANGLE OF ALIENS APPROACH---~
REM
D = INT(X*8+1)
POKE M(D,1),199
M(D,2)=M(D,1)
REM
REM---WHICH KEY IS PRESSED---
REM
GET AS
IF AS=""THEN 679
IF AS="W" THEN F=1
IF AS="E" THEN F=2
IF AS="D" THEN F=3
IF AS="C" THEN F=4
IF AS="X" THEN F=5
IF AS="Z" THEN F=6
IF AS="A" THEN F=7
IF AS="Q" THEN F=8
REM
REM---FIRING SOUND---
REM
B=4
FOR C = 248 TO 1 STEP -49
POKE4513,C:POKE4514,B
USR (68)
NEXT C
USR(71)
IF F = D THEN 769
IF M(D,2) =53627 THEN 889
POKEM(D,2) ,2
POKEM(D,2)+M(D,3),199

21

22

700 M(D,2) = M(D,2)+M(D,3)
719 FOR S =1 TO SP:NEXT S
72 GOTO 476
730 REM
748 REM---ALIEN HIT---
758 REM
768 POKEM(D,2) ,1@7
778 B= 6
788 FOR C = 1 TO 248 STEP 2
798 POKE4513,C:POKE4514,B
898 USR(68)
818 NEXT C
828 USR(71)
830 H= H+ 1
848 PRINT"HNNANNITS ON ALIENS";H
858 POKEM(D,2),@
868 IF H = 18 THEN PRINT"(C|":GOTO 979
878 GOTO 39g
888 MUSIC"C5"
898 PRINT
998 FOR Y =
9198 PRINT
928 DG= DGt

AMAGE SUSTAINED"

TO >NEXTY

:IF THEN 95

938 PRINT ITS ON SHIP";DG
948 GOTO 3

958 PRINT H DEAR"
968 PRINT UCKY IT WASN'T FOR REAL"
978 PRINT OTHER GO ? (Y/N)"
989 GET ZS:IF ZS=""THEN 989
999 IF ZS="Y"THEN RUN 29
1909 IF ZS="N"THEN END
1918 GOTO 989

1199 PRINT'CITHE OBJECT OF THE GAME IS TO FIRE AT THE"
1119 PRINT"WATTACKING ALIENS BY USING THE KEYS"
1129 PRINT"WO--W--E"
1139 PRINT"WNa-----D"
1149 PRINT"WWIZ--X--C"
1158 PRINT"WWDEPENDING ON THE ANGLE OF APPROACH"
116% FOR DL= 1 TO 3@@@:NEXT DL
1179 RETURN

This program, while being very simple in it's output,

lends itself to modification, and in doing so you will

learn different methods of programming. As the listing is

split into sections by the REM statements, it should be

easy to change the output to your own requirements.

The next listing is HANGMAN which also uses DIRECT

SCREEN ADDRESSING through the POKE statement. The gallows

graphics are contained in DATA statements in lines 289 to

379.

(n.b.16 spaces)

HANGMAN

1g

28

3g

4g

59

69

79

89

99

199

119

129

139

149

159

169

17¢

189

199

209

2198

229

230

249

256

260

270

289

299

329

318

320

336

34g

35¢

362

370

389

DIM A$ (26) ,H$ (26)

PRINT'(GENTER YOUR WORD"

PRINT"WPp|(dont let your opponent see)"

INPUT Y$

B=LEN (YS)

PRINT"(}*****THE WORD HAS";B; "B)LETTERS*****"

PRINT: PRINT" UNUSED: -SBJABCDEFGHIJKLMNOPQRSTUVWXYZ"

PRINT: PRINT"BRJUSED: -"

FOR X = 1 TO B:A$(X)=MIDS$ (Y$,X,1):NEXT X

PRINT "[APPPPPPNANARNNAY"; : FOR X=1 TO B:PRINT"*";:NEXT X

G=413:T = @

PRINT"HMMANPIPLEASE PRESS LETTER No";G;"_— (€]";

GET NS:IF NS=""THEN139

IF (ASC (N$)<65) + (ASC (N$)> 99) THEN13@

PRINT NS

POKE 53273+ASC (NS) ,@

POKE 53353+ASC (NS) , ASC (NS) -64

GOSUB 239 |

IF V=@ THEN GOSUB 289

IF L=99 THEN 439

IF T=B THEN 429

G=G+1:GOTO129

V=9

FOR X=1 TO B

IF HS(X)=NS THEN V=1:GOTO279

IF NS=AS(X) THEN PRINT "ARARRARAM!" >s TAB (X+5) ;NS:V=V+1:T=

NEXT X:RETURN T+1:H$ (X)=N$

DATA4£,28,41,129,42,120
DATAG,121,-4f,121,-89,121
DATA-129,121,-16,121,-209, 92
DATA-199,129,-198,12f,-197,126
DATA-196,95,-156,121,-116,121
DATA-76,287,43,120,44,129
DATA-37, 227,-36,173,-35, 227
DATA3 ,221,5,217,-76, 296
DATA43,93,44,64,45, 92
DATAO, 99
Z=54978

23

24

398 FOR X=1 TO 3:READK,L

400 IF L=99 THEN RETURN

418 POKEZ+K,L:NEXT X:RETURN

420 PRINT"HRANAAAAUAAMYWELL DONE..YOU DID THAT IN";G;" GOES":
| GOTO 52¢

4308 POKE54992,121:POKE54941,0:POKE54942,121

448 POKE54943,9:POKE54981,0:POKE54982,121:POKE54983,9:POKE54122,121

459 B=3

468 FOR A=l1 TO 249 STEPS

47% POKE4513,A:POKE4514,B

48 USR(68)

499 NEXT A

588 USR(71)

519 PRINTTERUAAANINO IT WAS ";YS

52Q@ PRINT"HMANOTHER GO? (Y/N)"

538 GET ZS:IF ZS=""THEN539

549 IF ZS="N"THEN END

550 IF ZS="Y"THEN RUN

568 GOTO 539

The unused letters of the alphabet are printed on third line

of the screen, in fact the letter A is printed in position

53338 in the Video Ram area. This is calculated by remembering

that the top left position is 53248, so the start of the

second line must be 53248 plus 40, which is 53288, and likewise

the third line will start with position 53328, being 40 more

than line two. The letter A is printed on. line three, eleven

characters in from the left, so it's position will be known

to be 53338. When you run the program it will be seen that

on selection of a letter, the letter moves from the unused

row to the used row. We know the ASCII codes for the letters

by uSing the table on page 121 of the manual, so the first

letter A has an ASCII value of 65. If we deduct 65 from the

position of A(53338) we get the number 53273. So you will

see that in line 169 of the program we POKE position 53273

and add the ASCII value of the selected letter to it, in

this case it would be 65 for the letter A, making a total

of 53338, with a zero, which is a blank space.

In order to print the letter two lines lower on the screen

in the used section the value of 53273 will have to have

80 added to it. This is achieved in line 179, but here we

run into a slight problem. The position can be calculated

very easily as we did previously, but the value of the

item we wish to print in this position is not calculated

using the ASCII codes, but the DISPLAY codes on page ll7,

which have different values. If you compare the two codes

you will see that the letter A has a display code value of

1 and not 65.In fact each letter of the alphabet is 64 less

than it's equivalent in the ASCII code. Therefore by POKEing

the calculated position with the ASCII value of the chosen

letter and subtracting 64 the correct letter in the display

code will be printed two lines lower on the screen.

If you are having difficulty understanding the principles

in using the Memory Map of the screen this simplified short

program should help in showing how characters are moved on

the screen. This shows a man falling down the screen and

finally walking away to the right. Line 18 uses a loop to

move the man, starting at position 20 on the top line of

the screen, and incrementing in steps of 40, which will

reprint him directly below his previous position on the

following line.

1g FOR Q = 29TO98M STEP 49

20 PRINT"

39 A=INT (4*RND(1) +202) (randomly selects 4 positions

4g POKE53248+0,A of man 202 to 206)

59 FOR R = 1TO290@:NEXT R (time loop for display in

69 NEXTOQ each position)

79 FOR Z = 1TO19

88 PRINT"

9¢ A=292 _ (display code value of man

108 POKE53248+0-4f+2Z,A standing upright)

11@ FOR R = 1TO2@@:NEXT R

128 NEXTZ

25

26

3

Style your Programs

3.1 Peeks and Pokes

On page 120 of the Sharp Manual there are a limited

number of special control commands listed. One of these

being POKE 4509,0 which sounds a note each time a key is

pressed. While POKEing it with a value of 1 restores to

normal. There are many more locations in memory that can

have their contents changed to another value for different

effects. These commands can be used in either the direct

mode or written into programs.

POKE59555,9@ blanks the screen.

POKE59555,1 restores to normal.

Care should be taken whenever POKEing is carried out.

Always ensure that you have got the correct address otherwise

your program might not run correctly if at all. With the

above address after the first POKE the screen will go blank

and whatever you type in will not be displayed, so you will

be typing blind. One use of this command could be to flash

the titles of a program on and off at the start of the run.

You will see it demonstrated in the CONNECT FOUR listing.

POKE57347,4 turns the LED on the right of the keyboard |

to red, but does not change to lower case letters.

POKE57347,5 turns it back to green.

This can be used to indicate an error by the user, and could

be written as a subroutine coupled with the USR(62) command:-

19g GOSUB1#PA

28 END

19@% FOR Z = 1TO19G

1199 POKE57347,4:USR(62)

1118 FOR A = 1TO19@:NEXT

1128 POKE57347,5

1139 FOR A = 1T0190@:NEXT

1148 NEXTZ

1158 RETURN

POKE6636,@:POKE6637,¢@ Renders the BREAK key inoperative when

the program is running.

POKE6636,295:POKE6637,3@ Restores to normal.

If it is important that the program is incapable of being

prematurely halted, then this command should be written into

the program early in the listing, along with the following

command. As with only using the previous command the BREAK

key could still be used while the program iS waiting for

an INPUT.

POKE79#@6,@:POKE79@7,@:POKE79@8,@ Renders the BREAK key

inoperative on INPUT.

POKE79@6,202:POKE79@7,252:POKE799@8, 39 Restores to normal.

POKE4464,1 Changes to lower case(SML CAP) letters.

POKE4464,@ Changes back to upper case (NORMAL) letters.

POKE1#682,1 While in direct mode before saving a program

will make the program RUN automatically each time it is loaded.

POKE19689,1 Also in direct mode before saving will stop the

program being LISTed or SAVEd each time it is loaded.

POKEing these two addresses with a zero (@) restores to

normal. a

You may have seen in professionally written programs

that the first few lines, which usually contain the authors

name or copyright notices in REM statements, have a zero

line number, and wondered how and why it was achieved. The

advantage of this is that the line cannot be deleted or

changed without renumbering, and therefore is semi permanent.

It is useful for ensuring that your name etc. remain on

the program. You cannot directly enter a line with a zero

as it's number (try it), but you can change any amount of

lines to zero after you have finished writing and. debugging —

your program.

Load in any Basic program and LIST it making a note

of the last line number used. The following routine when

entered must be numbered higher than the program loaded.

Let us assume the program finishes with a line number 3199,

then enter this routine starting with the line number 4999.

As you know Basic programs load into memory from location

18438 (decimal), but the first two locations(bytes) refer

27

28

to the start of the following line, so that the computer

knows where the next line starts. Locations 1844@ and 18441

hold the number of the actual first line number. If we

POKE these locations with a zero (@) then we will have

changed the first line to line #. You can change as many

lines as you wish to zero, the program will still run correctly.

Enter these five lines:-

4QGP8 A=18449

4091 PRINTA; PEEK (A)

4992 FOR X =18442T018542

4003 IF PEEK (X)=13THEN PRINTX+3; PEEK (X+3) :X=X+4

4004 NEXT X

Now enter:-

GOTO499G and 'CR'

The display on the screen should be similar to this:-

18440 19

18450 29

18483 39

18494 49

18594 59

18537 69

Apart from the first number (1844@), your numbers will not

necessarily be the same as listed here. The actual line

numbers at the begining of your program are listed in the

second column(in the above case from 18 to 6@)and their

respective locations in memory in the first column.

To change line 1 to @ you would enter in direct mode:-

POKE18449,@ followed by CR

To change the second line in the above case from 2@ to @:-

POKE18459%@,%8 and CR

Remember the first column is the location in memory and the

second is the line number. Only use this routine for low

numbered lines, as if they are numbered above 255 another

byte is used to cope with the higher number.

If you now list the program, you will see that the

first two lines have changed to @. You can alter as many

lines as you wish, but only do it after you have finished

writing and debugging the program, and remember to delete

lines 4998 to 4994 before you SAVE the program.

The cursor is controlled by locations 4465 and 4466.

POKE4465, 29 Would move the cursor horizontally along a

line to position 21(the positions are from

@ to 39) |

POKE4466,19 Would move it down to line 11(the positions

are from @ to 24)

When using the GET statement the ASCII value of the

key held down is placed in location 17828 in memory, and

can be used in many ways. Enter:-

1g GETAS:PRINT CHRS (PEEK (17828));

20 GOTO1G |

When you RUN this you will see that unlike the usual form

that the GET statement takes, of just getting one character

from the keyboard, and waiting for the next key to be pressed,

it actually continues printing any key held down. This can

be adapted very easily into games programs where fast moving

graphics are required. Consider the following short routine

which demonstrates this aspect.

18 PRINT"("

29 Z=17828:X=53748:Y=xX

32 POKEY,@:POKEY+1,@:POKEY-1,9

4g POKEX, 191: POKEX+1,231:POKEX-1,232

52 GET QS

6 Y=X

78 IF PEEK(Z)=81 THEN X=X-41
89 IF PEEK (Z)=65 THEN X=X-l

99 IF PEEK (Z2)=9@ THEN X=X+39

19M IF PEEK(Z)=88 THEN X=X+49@

11@ IF PEEK(Z)=67 THEN X=X+41

129 IF PEEK(Z)=68 THEN X=X+1

138 IF PEEK(Z)=69 THEN X=X-39

148 IF PEEK(Z)=87 THEN X=X-4g

158 IF X<53288 THEN X=Y

168 IF X>54207 THEN X=Y

178 IF PEEK(Z)=% THEN 59

188 GOTO3¢

To move the object around the screen use these keys:- |

O=Northwest, W=North, E=Northeast, D=West, C=Southeast, X=South

Z=Southwest and A=West.

29

30

3.2 User Prompts

You have probably seen in programs, or even written

into your own programs the "PRESS ANY KEY" prompt, followed

by the GET statement. This can cause confusion to non-computerist

users of the program in whether they have pressed the wrong

key. A far more explicit instruction would be to "PRESS SPACE

TO CONTINUE" or even "PRESS CR".

All you need to do is test the GET input for the ASCII code

of the key pressed. If they have pressed a wrong key the

program waits for the correct key, and the display on the

screen remains unchanged until the correct is pressed.

All that is required is to find the ASCII code of the

specific key that you want them to press.

The ASCII code for SPACE is 32

The ASCII code for CR is 102 (although this is not in the
manual)

So a typical routine would look like this:-

198 GOSUB 1999

118 PRINT"YOU PRESSED CR": GOTO19@ (program would continue
from here)

1998 PRINT"PRESS CR TO CONTINUE"

1919 GET AS:IF AS=""THEN1@19

1829 IF ASC(AS)=102 THEN 1949.

1938 GOTO 191g

1049 RETURN

Apart from the CR key having an ASCII code which is not

mentioned in the manual, all the other yellow keys also

have a code including the SML/CAP key.

Enter the next listing, and you will see the codes for

each key pressed. When asked for PRESS KEY, press the

cursor keys with or without the SHIFT, and the codes will

be displayed:-

12 PRINT"PRESS KEY"

28 GET AS: IF AS=""THEN2Q

32 PRINT ASC(AS)

4g GOTO 19

558

CONNECT FOUR

GOSUB1139
DIM NAS (2),X(9),B(3),FW(4),S(2)
FOR N = 1T02
X=53858
PRINT"(QWHAT IS YOUR NAME PLAYER";N:USR(62)
INPUT NAS (N)
NS="HELLO@"+NAS(N) (REMEMBER THE @
FOR L = 1TOLEN (NS) AFTER HELLO)
A=ASC (MIDS (NS,L,1))
P=X+L-2@* (A-64)
M=X+L
POKEM+89%,A+64

FOR J = M TO P STEP-49
IF J=P THEN POKEJ,248:GOTO169
POKEJ ,127
NEXT J,L
USR (62): FOR DL = 1T03999:NEXTDL
NEXT N
N=1
PRINT "(C"
FOR A = 1T09
READ X
FOR B = 1TO8
POKEX,121
X=X+4G
POKEX,189
X=X+4¢
NEXT B
NEXT A
DATA53426,53428,53439,53432,53434, 53436,53438, 53449,53442
RESTORE
FOR A = 1T08
READ X
FOR B = 1TO68
POKEX+41,12@
X=X+89
NEXT B,A
RESTORE
AA=33
FOR A = 1T0O8
READ X
POKEX-119,AA
AA=AA+1
NEXT A
PRINT@29,@;"-------------------1234567 8----- "
PRINT "fHISCORE"
PRINT@1,9@;S(1)
PRINT@3,@;S(2)
PRINT@1,3;NAS(1);" IS ":CHRS (241)
PRINT@3,3;NAS(2):" IS ";CHRS (247)
PRINT@22, a3" " (33 spaces)
P=N+7@

PRINT@11,90; "WHICH COLUMN (1to8) °
PRINT: PRINT"

PRINT" ";sNAS (N) :USR(62)

31

32

566
576
589
599
688
618
620
639
64g
FULL
656
669
676
680
699
729
719
720
739
749
759
769
779
78D
799
888
81g
829
830
84g
859
869
870
88g
899
98D
919
929
936
949
959
966
979

GET AS:IF AS=""THEN569
IF (ASC (A$)<49) + (ASC (A$) *56) THENGOTO569
PRINT "MyM COLUMN ";AS;
RESTORE
FOR A = 1T09
READX (A) :NEXT A
AA=VAL (AS)
X=XK (AA) -79
IF PEEK (X+89)<> @THENPRINT@22,0;"***** THAT COLUMN IS
keKKKE" SGOTOGEG
GOTO679
USR(62):FOR DL = 1T0599:NEXTDL:GOTO519
POKEX,P
FOR DL = 1TO199:NEXT DL
IF PEEK (X+8@)=@ THEN POKEX,@: X=X+80 :GOTO679
GOSUB7 39
IF N=1THEN N=2:GOTO519
N=1:GOTO519@
CW=X:TL=1

FW (TL) =CW
DATA8@,162,249,-88,-169,-249
DATA78,156,234,-78,-156,-234
DATA82,164,246,-82,-164,-246
DATA2,4,6,-2,-4,-6
FOR V = 1T08
IF INT(V/2)<2V/2 THENTL=1
FOR A =1T0O3
READB (A)
NEXT A
FOR A = 1T03
IF PEEK (CW+B(A))<>P THENOGG
TL=TL+1
FW (TL) =CW+B (A)
IF TL = 4THEN92Q
NEXT A
NEXT V
RETURN
PRINT@15,9;"THE WINNER IS"
PRINT@17,4;NAS (N)
S(N)=S(N) +41
F=9
Q=74
IF F>=1@THEN1(@59

988 FOR A = 1T04
999 POKEEW(A),Q:NEXT A
108% USR(62)
191% FOR DL = 1T04@@:NEXT DL
1929 IF Q=74 THEN Q=P:GOTO1@4@
1038 Q=74
1049 F=F+1:GOTO0979
195g PRINT@23,Q;"ANOTHER GAME? (Y/N)"
196% GETSSS:IF SSS =""THEN1#6@
1079 IF SSS="Y"THEN1199
1989 IF SSS="N"THEN1129¢
1998 GOTO1LPM6P

1199 IF N=] THEN N=2:RUN299

1119
1129
1139
1149
1159
1169
1179
1186
1199
1299
1219
1229
1236
1249
1256
1266
1276
1289
1299
1399

This

some

N=1:RUN299
PRINT"THANKS ";NAS(1);" & ";NAS (2) :MUSIC"C3D3F3":END
PRINT "(Cf
FOR A = 1T05
POKE59555,8 |
PRINT@4,19@; WHEKEKKEKEKEKEKEKKEKEKKEKEEN

PRINT@6,19;" CONNECT FOUR"
PRINTQS8 , 1A NERKKKKKARERKKKE KEN

FOR DL = 1T03%@:NEXT DL
POKE59555,1
FOR DL = 1T039@:NEXT DL,A
PRINT"NMWFOR 2 PLAYERS"
PRINT"WTHE FIRST TO GET 4 TOKENS IN ANY ROW"
PRINT"WMIS THE WINNER"
PRINT" MEITHER HORIZONTAL, VERTICAL OR DIAGONAL"
FOR DL = 1TO29%@:NEXT DL
PRINT"Mpress 'CR' to play"
GET QS: IFOQS=""THEN1289
IF ASC(Q$)=192THEN RETURN
GOTO1289 |

program whilst not being too professional, does use

good routines which you may wish to use in programs

of your own.

The title is contained within lines 113@ and 1399, and is

POKE59555

mentioned earlier to flash the screen display on and off.

called as a subroutine in line 19, it uses the

Placing the titles at the end of the program means that

you are not confined for space, and can take time compiling

them when the main program is completed. |

The name printout is contained within lines 398 to 18@ and

can

The

has

The

the

easily be used in other programs.

printing of the grid is done in lines 208 to 459 and

been kept to one statement per line for clarity.

main part of the program is between 469% and 1119, with

checking for a winning line in lines 73@ to 919.

When entering the listing note that the @ after HELLO in

line 7% is not an error, and in line 45@ there is one space

between each of the numbers, 1 to 8, also line 519 has 33

Spaces between the quotes.

33

34

4

Program Tips

4.1 Decimal Aligning

The most annoying aspect of printing out a table of

numbers, is getting them to align under each other. There

is a routine for achieving this on page 72 of the Sharp

manual, but it does not allow for decimals, such as when

one is trying to print Pounds and Pence in a cheque book

program or budget account.

The following routine may look complicated, but it works,

and should be entered as a subroutine, and called whenever

printing is required.

The variable N is the figure to be printed.

18 DEF FND(X)=INT (LOG (ABS (N)) /LOG(1Q))
29 PRINT "IG"
25 INPUT"INPUT DECIMAL NUMBER)"; N
48 GOSUB1SPP
58 GOTO25
1fGG 2 = 3G
1910 IF N<l THEN Z=Z-1:IF N<@.1 THEN Z=Z-1
1828 PRINT TAB(Z-FND(X));N
1938 RETURN

RUN

The variable Z in line 199M is the position of the first

character to be printed. Change it to your own requirements.

Line 5@ has been inserted to demonstrate, and would not be

needed in a program.

If you input various numbers when prompted such as:-

09, 1.87, 8.987, 12, 4.05, etc., you will see that they

are all aligned.

Whilst this format is adequate for most applications, there

are additional lines which, when added, give a formatted output

which makes monetary output etc., look more correct.

For example if the input was the number 12, 12.9 would be

printed, similarly 1.5, would become 1.59.

Try adding the following lines to the above program.

5 os="Qg"

398 N=INT (N¥1094+9.5) /192
31 NS=STRS(N)
32 A=LEN (NS)

33 FOR B=1 TO A
34 IF MIDS(NS,B,1)="." THEN GOTO 37
35 NEXT B:NS =NS+"."40S+0S
36 GOTO 42

37 D=VAL (MIDS (NS,B,A))
38 IF D*1@<>INT(D*1f) THEN 49
39 NS=NS+0$

ALSO CHANGE THE VARIABLE N IN LINE 1829 TO NS

The program also rounds up any figures after the second

decimal on input, if you do not want this delete the +9.5

in line 39.

4.2 Logical Operators AND/OR

In many variants of Basic, and program listings, you

may see the logical operators AND OR used such as:-

IF Z>47 AND Z¢€58 THEN GOTO (line number)

Sharp Basic does support these operators, but it isn't

too easy to find in the Manual. Their descriptions are

on page 113. The line above would have to be changed, but

could still be entered as one line.

The Sharp equivalent to AND is the * symbol.

And the equivalent to OR is the + symbol.

The line above written for the MZ-8@K should be entered thus:-

IF (Z2547)*(Z<58) THEN GOTO (line number)

The two arguments must be enclosed in brackets.

* (AND) with +(OR) can be used in the same line such as:-

IF 2247 AND Z2¢58 OR Z>64 AND Z<71 THEN GOTO (line number)

Should be altered to:-

IF (25247) * (Z<58)+(2Z>64)*(Z<71) THEN GOTO (line number)

This feature cuts down on the otherwise larger amount of

lines that would have to be used, and also reduces on the

amount of memory.

35

36

4.3 Protecting Programs

We have already seen the orthordox method of protecting

programs, in order to stop them being LISTed and SAVEd.

There are other ways of achieving the same result. The commands

or keywords that the computer uses can be altered.

The command LIST is held in memory locations from 5343 to 5346.

On all the keywords, you can alter any letter except the last in

each command, i.e. on the word LIST, LIS can be changed but the

T must remain as it is. In fact if you PEEKed the location 5346

expecting to see the ASCII code for the letter T, you would

find a completely different character, as the computer uses the

Final letter in each command to differentiate between them, so

never alter the last letter.

If, when you have completed debugging your program and

made sure it runs effectively, you wish to alter the first

letter of the command LIST, you could enter as your first line:-

1 POKE 5343,77

This will in fact only LIST the program, when it is subsequently

run, if you enter the word MIST, and the word LIST will no longer

be recognised and will produce a SYNTAX ERROR message if it is

entered. In fact you have changed the first letter of the word

by POKEing the ASCII code of M in it's place.

To ensure that the program runs as soon as it has been loaded,

before SAVEing the program on tape enter in direct mode:-

POKE 19682,1:POKE 19689,1

This will effect the AUTO-RUN flag, along with the anti LIST-SAVE

flag. Please remember to note any changes you make in order to

be able to return to normal. Always PEEK the location before

making any alteration and remember the value it contains.

The command SAVE is located in memory from 5402 to 5405,

and could be altered as with the LIST example above, making sure

not to alter the last letter, and could be entered in the first

line of the program.

Two other locations can be changed within the interpreter,

One is in the LIST operator handler routine, and the second in

the SAVE routine. These should also be entered early in the

program, but not until it has been debugged.

POKE 6829,195:POKE 10764,195

POKEing these two addresses with the two values will cause

the computer to return to the READY message whenever LIST or

SAVE are entered.

POKE 6829,2@2:POKE 19764,194 will return them to normal.

Quite obviously, anyone who has read this will also know of

these ways of protecting programs, and by using PEEK to look

at the various addresses, will be able to see which locations

have been altered. But if you altered the statement PEEK to

something quite different such as:- SEEK, LOOK or even SSSS,

each time they entered PEEK a SYNTAX ERROR would occur, as

the computer would no longer recognise PEEK as being a keyword. —

Unlike LIST and SAVE, all the letters of PEEK can be altered,

not just the first three letters. The amount of different

combinations which could be substituted is vast, similar to

a small combination lock. Look up the ASCII values of the

letters you wish to replace PEEK with, in the codes on page

121 of the Sharp manual.

The keyword PEEK is located in memory from 5582 to 5585.

Let us assume you wished to alter it from PEEK to FIND.

The ASCII codes for F.I.N.D are 7%, 73, 78 and 68. The second

line in your program could read:- |

2 POKE 5582,70:POKE5583,73:POKE5584,78:POKE5585,68

After the program has AUTO executed only you will know the new

word which has replaced PEEK. To look at a location in memory,

and see what value it contains, you would not enter PEEK (5585)

but FIND(5585) and the computer would understand the new statement

and respond.

If one couples these alterations with the BREAK disable

operations mentioned in section 3.1, and enters them after the

program has tested within the first few lines of the listing,

a fair amount of protection will exist. So remember to leave

the first lines free to accomodate them.

Always keep a record of the changes you make otherwise

complete chaos could occur, and remember that all memory will

return to normal when you reload Basic so no harm will be done

if you do come across difficulties.

37

38

5

Converting Programs

The Commodore Pet appears to be a popular microcomputer

(why I do not know), and on glancing through the many micro

magazines you will always find program listings written for

the Pet. In actual fact it is fairly straightforfard to

convert them to run on the MZ-80K.

One of the first things you will notice is the peculiar

symbols used in strings, or after PRINT statements. These are

usually cursor commands, and are printed inversely (white on

black) .
An inversed HEART sign CLEAR SCREEN {fq

" " " letter S = HOME (Al

" ow "letter Q = CURSOR DOWN M

" "CLUB sign = CURSOR UP it}

vertical line

" " " } (looks like)

CURSOR LEFT iq

CURSOR RIGHT ff

The Pet can also print black letters on a white back-

ground. To achieve this they enter an inversed letter R, and

to revert to normal an inverse horizontal line. If you come

across this just ignore it.

Furthermore they do not have a SML/CAP key, and lower

case letters have to be POKEd in by uSing POKE59468,14 and

returned to normal capitals by POKE59468,12. If you come

across this just use the SML/CAP key instead.

The Memory map of the MZ-80K is from 53248 top left) to

94247 (bottom right) as was explained earlier. The Pet's

Memory map is 20480 bytes lower. So any POKEing written in

the range 32768 to33767 that you see will have to be converted

for the SHARP by adding 20480. Sometimes they are found at the

beginning of a program listing such as:- M=32768, and later

on you will see a line :- POKE M,48. So just alter the original

value of M to 53248, or the equivalent. |

The Display codes for the graphics used with POKEing

directly to the screen are different, and in the above example

POKE M,48 would print a @ at that position, whereas the @ in

the display code for the SHARP is 32. The table that follows

shows the eguivalents. The table only goes up to 127 as the

Pet does not have the many varied graphics that we enjoy on

the SHARP. The codes from 128 to 255 are the inverse of the

codes from @ to 127, so if you saw POKE M,176 it will be to

POKE a reverse # onto the screen at that position.

If you find that after running the converted program,

the display does not look correct, you will see that altering

some of the display codes of the graphics will probably

improve the effects. The main concern is to get it running,

these small adjustments can be quite fun as you have more

graphic characters to experiment with.

PET to SHARP Conversion Table (Display Codes)

PET SHARP PET SHARP PET SHARP

a 85 172 121 | 100 60
1to26 1to26 (AtoZ) 73 76 101 113

27 82 74 111 102 208

28 89 75 110 103 61

29 84 76 50 104 212

30 80 77 119 | 105 78
31 69 78 118 106 63

32 O (space) 79 114 107 30

33to4l 97tol05 80 115 108 248

42 107 81 71 109 28

43 106 82 56 110 93

44 47 83 83 111 62

45 42 84 117 112 92

46 46 85 75 113 31

48to57 32to41 (0to9)| 86 109 114 95

58 79 87 72 115 94

59 44 88 70 116 55

60 81 89 57 117 123

61 43 90 68 118 127

62 87 91 189 119 122

63 73 92 210 120 122
64 52 93 121 122 51
65 65 | 94 96 123 244

66 53 195 97 124 242
67 120 96 64 125 29
68 116 97 123 126 241
69 48 98 58 127 108
70 120 199 54

39

The Pet also uses AND and OR which has already been

mentioned. A typical line could read:-

198 IF Z=4 AND Y=2 THEN GOTO2@9

This will present no problem, simply contain the arguments

in brackets and change AND to* ,and OR tot.:-

129 IF(Z=4)* (Y=2) THEN GOTO299

Another line which you may come across is the following:-

386 YY = —((X<1G) *2+ (X21) *5)

Or |

306 YY = -2*(X<1) -5* (X19)

To the beginner these two lines, which actually mean the same

thing, look frightening. In fact they can both be entered into

the MZ-80K, and it is Boolean arithmetic, something that

computers are very good at, but we are not going to try to

unravel it's mysteries here. Suffice to say that the above

lines are a shorter version of the IF...THEN statement.

If X is less than 10 then Y = 2, and if X is more than 10

then Y = 5. You are probably saying but what if X equals 10.

Well then Y will equal O (zero).

By uSing this technique you will save two extra lines.

Enter this program:-

1g INPUT" INPUT X ";X

29 = -—((X<1f) *2+(X>19) *5)

32 PRINT"Y="3¥

4p GOTO1G

Now try entering different values for the variable X.

If you change the leading minus sign to a plus sign in line

20, Y will return negative numbers of -2 or -5. The reason

for this is that when using these logical operators, if a

statement is true the computer returns a value of -l, and

if it is false returns a zero @. So if you negate a negative

number it becomes positive. In the first instance above if

X is less than 10 Y will equal --1*2 , which is +2.

Remember that all Pet POKE codes are different to the

SHARPS, so never enter them exactly as they are written, if

you are not sure what they do leave them out and try running

the program without them. Occasionally you may see POKES

around 152,158 or 512 coupled with a WAIT statement, you can

probably get round these by using the GET statement. GOOD LUCK.

6

Sorting Data

There comes a time when the game playing has to make

way for some more serious applications, even if it is only

to justify the purchase of the expensive item of hardware

sitting in the corner to ones spouse, or to show visitors

that your Micro can perform a variety of tasks, other than

playing Star-trek continously.

The next chapters concentrate on two aspects which

should prove useful, the first is concerned with sorting

of data into numerical order, whereas the second explains

how to store data on tape for future reference and updating.

On page 66 of the Sharp manual is a small program

which sorts a series of numbers into order. The method

used is called a Bubble-sort. Quite simply the program

runs through the list of numbers and selects the highest

number and places it at the top of the list, afterwhich it

runs again and selects the next lowest number and places

it in position two of the list. The program continues until

all the numbers are in order. Whilst this Bubble-sort method

1s perfectly adequate for lists of numbers up to 50 or 60,

it becomes exceptionally slower for longer lists. In fact

if it had to place in order a list of 255 numbers it would

take about 4 minutes. In the next examples I intend to

show how we can cut that 4 minutes down to 1 minute by using

an alternative method of sorting. Although this may be a

reduction in time of 75%, some might say that it still is

not fast, unfortunately the only way to improve on this

Figure is to program in Assembly language, which is another

story, for the purposes of this book which is concerned with

Basic, and showing various routines to enable us to write

better programs, we will continue with Basic.

We are going to enter the first program which generates

a series of random numbers and sorts them into order using

the Bubble-sort method. We will then enter a second program

which uses a faster method, and you can compare the results

achieved. You will be prompted to enter the amount of numbers

to be sorted.

41

42

198 INPuUT"E]POTAL OF NUMBERS TO SORT ";N
118 DIM B(N)
128 FOR X=1TON
139 B(X)=INT(RND(1)*19@) +1
149 PRINT B(X);
158 NEXT x
168 PRINT:PRINT"THESE ARE THE NUMBERS TO BE SORTED"
178 PRINT"THE TIME STARTS NOW"
188 TIS="000000"
198 FOR T=N TO 1 STEP-1:M=9
208 FOR S=l TO T
219 IF B(S)<=M THEN 239
228 M=B(S):L=S
2308 NEXT S
248 B1=B(L):B(L)=B(T):B(T)=Bl
258 NEXT T
268 AS=TIS
278 PRINT:PRINT"TIME TAKEN TO SORT";N;" NUMBERS WAS"
288 PRINT AS$:PRINT
299 FOR X=l TON
308 PRINT B(X);
318 NEXT X
328 END

This is a typical Bubble-sort program and is adequate for

sorting numbers up to a total.of 50 or 60. The variable N

is the total of numbers to sort, and the array B(X) contains

the actual numbers. Lines 18@@ to 15@ generate these numbers

and in a typical program these would be omitted. The actual

sorting takes place in lines 198 to 259, and are printed out

in lines 298 to 319.

If you now RUN the program, entering different values for N

when prompted, you will see the time taken to sort. Begin by

entering 10, and the time to sort will display 000001, which

is very fast. Now RUN the program again using higher numbers

Start with 20 and keep increasing it up to, and no higher than

255, aS a higher number than this will produce an error message,

and make a note of the times taken. Now enter the next program.

Type in these additional lines:-

185 GOTO 339

332 M=12:DIM LH(M) ,RH(M)

349 G=1:LH(1)=1:RH(1)=N

359 L=LH (G) : R=RH(G) :G=G-1

368 T=L:J=R:Y=B(INT((L+R) /2))

370 IF B(I)<Y THEN I=I+1:GOTO37¢

389 IF Y€B(J) THEN J=J-1:GOTO38@

396 IF I>J THEN429

489 W=B (I) :B(I)=B(J) :B(J)=W

41g T=I+1:J=J-1

420 IF I<=J THEN379

430 IF I>=R THEN45@

44g G=G+1:LH(G)=I:RH(G)=R

45¢ R=J

469 IF L<R THEN369

479 IF Gs>g THEN359

489 GOTO269

If you RUN this program and compare the subsequent times,

it will be seen that the second program is faster for

Quantities over 60.

TYPICAL TIMES:- —

No. of items Bubble-sort Quicksort
to sort.

10 O01 OL

20 02 02

30 04 04
40 07 05
50 10 07
60 15 09
80 26 12

100 40 15
200 2.35 37
255 4.00 46

The actual sorting takes place in lines 339to 479, and

this could be entered as a subroutine and called whenever

sorting is required. It contains more code than the Bubble-

sort, but as can be seen, is far quicker in processing if

large amounts have to be sorted.

This sorting can be applied to strings, and this will be

seen in the next chapter.

43

44

7

Data Tape Handling
7.1 Address List Program

This chapter contains an address list program which

makes good use of the data file handling of the MZ-80K, which

after explanation will show you the techniques used can be

written into any type of program where lists and corresponding

data records need to be made. The program is menu driven,

which means the screen prints a list of options that the user

can make.

f +)

NUMBER OF ENTRIES IS 30

SELECT FROM LIST

PRINTOUT
NEW ENTRIES
DELETIONS
SORTING BY SURNAME >
CHANGE DETAILS
SAVE DATAO

O
w
m

&—
&
W

N
H

F
H

 kekkex ENTER 1 to 6 KKEKKK

4 | SY

On selection of an option the program branches to a routine

to carry out that specific task, and on completion returns

to the menu. It should be remembered that if you feel the

urge to write a similar program, that each module of an

option can be self contained, written and tested separately.

This way you will not get tied up in knots if it is a long

listing, because the whole program will be split into several

small programs each being capable of being called from the

main menu. One application of this program could be to list

the names and addresses of a club membership, up to 255

separate entries can be made. Or if you have a printer linked

to your Sharp it could be used to generate address labels,

you would of course need to alter the lines containing PRINT

statements to PRINT/P, but that is fairly simple once the

program iS up and running.

As Basic SP-5025 does not allow full string comparisons,

a machine code routine is POKEd into the top section of

memory at the begining of the program with a GOSUB 2199.

This routine enables the Sharp to sort by surname, in that

it can decide that SMITH should be placed before SMYTH in

a sorted list, something that it cannot normally achieve.

This machine code routine is only encountered once during

the program run, and for that reason is entered towards

the end of the listing, along with the titles for the same

reason. As in most micros whenever a GOSUB or GOTO statement

is encountered the search for that particular line number

begins at the start of the listing and works down line by

line until it finds it. Normally on short programs this

will not be of any consequence so far as execution time is

concerned, but on longer listings, and in particular routines

such as the sorting routine used here, the amount of times

that a GOTO command is met means that the earlier ina listing

it can be placed the shorter the execution time will be.

The sorting routine, which was described in the last chapter,

has been altered to accomodate strings and is in lines 110 to

330. Although we saw how actual sorting times could be

reduced in the last chapter, this sorting as far as strings

is concerned is not as fast as one would like, mainly due

to the time in moving the strings related to @éach surname,

such as the addresses and telephone numbers. When the correct

position of the surname has been made the relevant strings

associated with it have to be changed to the new position, and

this takes time. A good machine code subroutine could be

used here, as the time would reduce drastically. You will

only notice the time delay on long lists, and if this occurs

leave the sorting until last on your actual run.

The only alteration to the listing that might have to

be made is in line 226%, where you must enter the size of

your memory, 24,36,or 48, as this is where it calculates

the top of memory to enable the machine code routine to be

entered.

Line 38% asks if there is data already on tape.

The first time you run the answer will be no, and the program

skips the INPUT routine from tape and jumps to the menu.

The INPUT/T lines must have their variables in the same order

as the PRINT/T lines, (440 to 490 and 213@ to 2180)otherwise

errors will occur.

45

46

One point which should be mentioned is, if you ever BREAK

a program during a ROPEN or WOPEN command has been executed,

you will not be able to carry on by entering CONT, as the

file has not been closed. You must enter in direct mode

CLOSE before carrying on with a GOTO (line number) command.

The menu starts on line 59@ and depending on which

option is selected (l1to6), branches with an 'ON Z GOTO'

command in line 659%. The option number is tested in line

6498, to ensure only a number between 1 and 6 was entered.

Here we see good use of the logical 'OR' in the form of

a '+' sign as described earlier. |

648 IF(Z<1)+(2Z56) THEN629

which means simply if Z is less than 1 OR if Z is greater

than 6 , go back to line 628 and wait for another input.

The printout of names and addresses begins in line

668 , and again you are asked to enter either all the names

or only one group. If any of the names need to be checked,

the scrolling can be halted by pressing any key, afterwhich

it can be restarted by any key too.

All the other sections are preceeded by REM statements

and can be found easily. Remember before you save any data

on tape to place an empty cassette in the recorder, as soon

as this option is selected you will be prompted to "RECORD

PLAY". |

The assembly language routine for sorting by surname

starts in line 219% and is contained in DATA statements.

Be careful to enter these lines correctly as an error here

will result in the program crashing whenever sorting takes

place.

The titles are contained in lines 2359 to 2479 and

can be changed to your own requirements.

KkKKKKKKKKKEKKK ADDRESS LIST PROGRAM *¥¥RKKKEKKKKKE

186 GOSUB 2199%:GOTO 349

118 REM SORT ROUTINE

128 PRINT"CSORTING":PRINT"WWWHWPLEASE BE PATIENT"

138 | POKE88$5,BL:POKE88#6,BH

149 S=1:SL(1)=1:SR(1)=EN

158 L=SL(S):R=SR(S):S=S-1

169

172

189

199

209

216

229

230

249

252

269

272

289

299

399

319

329

339

349

359

369

372

382

399

499

419

429

439

44g

459

460

479

489

499

5 PB

519

529

539

549

X=L:J=R:X$=SNS$ (INT ((L+R) /2))

IF SNS$(X)<XS THEN X=X+1:GOTO179

IF X$<SN$(J) THEN J=J-1:GOTO18Q

IF X>J THEN 278
WS=SNS (X) : SNS (X) =SNS$ (J) : SN$ (J) =WS

ES=CNS (X) :CNS (X) =CNS$ (J) :CNS$ (J) =ES

RS=ADS (X) :ADS (X) =ADS (J) : ADS (J) =RS$

TS=TNS (X) : TNS (X)=TNS$ (J) : TNS (J) =TS

YS=PCS (X) : PCS (X) =PCS$ (J) : PC$ (J) =Y$

O=C (X) :C(X) =C (J) :C (J) =O

X=X+1:J=J-1

IF X<=J THEN17£

IF X>=R THEN309

S=S+1:SL(S)=X:SR(S)=R

R=J

IF L<R THEN 169

IF S<?9 THEN 159

GOTO 519

M=12:DIM SL(M),SR(M)

DIM CNS (159) ,SN$ (15) ,ADS (15)

DIM TNS(15@) , PCS (15) ,C (15H) ,H(1P2)

X=: EN=9

PRINT: PRINT:PRINT"IS THERE ANY DATA ON TAPE (Y/N) ":USR(62)

GETAS:IF AS=""THEN 399

IF AS="Y" THEN 449

IF AS="N" THEN 519

GOTO 399

REM *****READ DATA TAPE****

ROPEN"MAIL LIST DATA"

INPUT/T EN

FOR X =1 TO EN

INPUT/T CNS$(X),SNS$(X) ,ADS(X) , TNS (X) ,PCS (X) ,C(X)

NEXT X

CLOSE
REM *****MENU*****

PRINT" "

PRINT" NUMBER OF ENTRIES IS";EN

PRINT" "

PRINT"WPPPPPPPPPPPPISELECT FROM LIST": TC=EN

47

48

559

569

572

582

599

699

619

629

639

649

652

660

676

686

699

7 OD

719

729

736

749

759

769

770

789

799

8 OP

816

829

830

84g

852

866

872

88p

899

989

919

929

PRINT"SPPM1l PRINTOUT"

PRINT"Ppph]2 NEW ENTRIES"

PRINT"BbDW3 DELETIONS"

PRINT"bbbM4 SORT BY SURNAME"

PRINT"PPpw5 CHANGE OF DETAILS"
PRINT"bpbwW6 SAVE DATA"

PRINT" kkkKKKKEK ENTER 1 to 6 ****eeKEE"SUSR (62)

GETAS:IF AS=""" THEN629 :

Z=VAL(AS)

IF (Z<1)+(Z>6) THEN629

ON Z GOTO 679,1629,13298,118,1559, 29 99

REM ****** PRINTOUT ******

PRINT" PRINTOUT ALL (ENTER A)"

PRINT"OR ONLY ONE GROUP (ENTER 1to6)"

GETZS:IF ZS=""" THEN699

IF Z$="A" THEN N=1:GOTO839

Z=VAL(ZS)

IF (Z<1)+(Z>6) THEN679

N=9

FOR X=1 TO EN: IF C(X)<>Z THEN 819

N=1

PRINT CNS (X);SNS(X);" "3;ADS (X)

PRINT TNS (X);" ™sPCS (X)

PRINT
GETZS:IF ZS="""THEN 819

GETQOS: IF QS=""" THEN 8992

NEXT X

GOTO 969

FOR X=l TO EN STEP 2 |

PRINT CNS$(X) ;SNS (X) ;TAB(2@) ;CNS$ (X+1) ; SNS (X41)

PRINT ADS (X) ;TAB (2) ; ADS (X+1)

PRINT TNS (X) ; TAB (2) ; TNS (X41) |

PRINT PC$(X) ;TAB(17);C(X) ; TAB (2) ; PC$ (X+1) ; TAB (37) ;C (X41)

GETZS:IF ZS="" THEN 939

PRINT"WMANY KEY TO CONTINUE....ZERO TO QUIT"

GETQS:IF QS="" THEN 999

IF QS="9" THEN EN=TC:GOTO 519

PRINT "{}";SPC (38) ; "(YN"

939

949

959

969

979

989

999

1929
1919

1629
1639

1642

1659

1869
1679

1089

1999
1199

1119

1129

1139

1149

1159

1169

1179

1189

1196

1299
1216

1226

1236

124g

1256

1269 —

1279

PRINT

NEXT X

IF SN$(X-1)=""_THEN EN=X-2:GOTO 989

EN=X-1

IF N= THEN PRINT"WNO ENTRIES IN GROUP";Z

PRINT"WDONE..PRESS ANY KEY":USR (62)

GETZ$:IF zZS=""_THEN 999

GOTO 519

REM ****** NEW ENTRIES *****%

X=EN

X=X+1

PRINT'GIF THERE ARE NO INITIALS ENTER ZERO (f)"

PRINT "WHINUMBER" ; X: USR (62)

INPUT"MFIRSTNAME/INITIALS ";CNS(X)

IF ASC(CNS(X))=48 THEN CNS (X)="":GOTO1#9P

CNS (X)=CN$(X) +" "

PRINT"*****TP ENTRY NOT REQUIRED TYPE §***xx"

INPUT" LASTNAME "SSNS (X)

IF ASC(SN$(X))=48 THEN GOTO 519

PRINT "(WMN; SPC (38) ; "WAM"

INPUT"M No.& STREET "; ADS (X)

IF LEN(AD$(X))>19 THEN PRINT"TOTAL 19 LETTERS PLEASE
ABBREVIATE":GOTO 1139

INPUT"WTOWN & COUNTY ";TNS (X)

IF LEN(TNS(X))>19 THEN PRINT"TOTAL 19 LETTERS PLEASE
ABBREVIATE":GOTO 1159

INPUT "MTELEPHONE ";PCS (X)
IF LEN(PC$(X))<2 THEN PCS(X)=""

INPUT"MUSERS CODE (1 to 6) ";C(X)

IF (C(X)€1)+(C(X)>6) THEN 1199

PRINT "NWPPPpaIS ALL THE ABOVE CORRECT (Y/N) ":USR(62)

GETAS:IF AS="" THEN1229

IF AS="Y" THEN 1269

IF AS="N" THEN GOSUB 188f:GOTO 1269

GOTO 1229

PRINT"MIS THERE MORE DATA TO ADD":USR(62)

GETAS:IF AS="" THEN 1279

49

50

1289

1299

1399
1319

1329

1339

1349

1359

1369

1378

1389

1399

149

1419

1429

1436

1449

1459

1469

1479

1489

1496

1592
1519

1529

1539

1549

1559

1569

1572

1589

1599

1622

1619

1629

1639

1649

IF AS="Y" THEN 193

IF AS="N" THEN EN=X:TC=EN:GOTO 519

GOTO 1279
REM ******DELETIONS******

PRINT "(QDELETIONS:-": X=9
USR(62):GOSUB 1649:IF ASC(DT$)=48 THEN 519

IF V=9 THEN 1339

PRINT

PRINT" ~--~-~--------------------------------- "

INPUT" INPUT No. TO DELETE(@ returns to menu) ";L

IF L=@ THEN 51g

PRINT CNS (L) ;SNS$ (L)

PRINT ADS (L)

PRINT TNS$(L);" ";PCS$(L)

PRINT"MARE YOU SURE (Y or N)":USR(62)

GETZS:IF ZS=""THEN1439 |

IF ZS="N" THEN1329

IF Z$="Y" THEN PRINT"NWWAIT..AM MOVING DATA":GOTO 1479

GOTO 143g

CNS (L)="":SNS$ (L)="":ADS (L) ="":TNS (L)="":PCS (L) ="":C (L) =@

FOR X=L TO EN

CNS (X) =CNS$ (X+1) : SNS (X) =SNS$ (X+1)

ADS (X) =ADS$ (X+1) : TNS (X) =TNS (X+1)

PC$ (X) =PCS (X41) :C (X) =C (X41)

NEXT X

EN=EN-1

GOTO 1329

REM ******DETAIL CHANGES******

PRINT"|CCHANGE OF DETAILS"

GOSUB 1649:IF ASC(DT$)=48 THEN 519

IF V=@ THEN 1579

PRINT

INPUT" INPUT No. TO CHANGE (@ returns to menu)";X

IF X=9 THEN 519

GOSUB 1889:GOTO 1579

INPUT "PLEASE ENTER SURNAME (@ returns to menu)";DTS$

1659

1669

1672

1689

1692

1792

1719

1729

1739

174g

175¢

1769

1772

178¢

179¢

1899

1819

182g

1839

18492

1859

1862

1872

1882

1899

1999

1919

192g

193¢

1949

1959

1962

19792

198g

1999

2092

2618

2029

IF ASC(DT$)=48 THEN RETURN

V=0
FOR X=1 TO EN

IF SNS(X)=DTS THEN V=V+1:H(V) =X

NEXT X

IF Veof THEN 1819

PRINT"HINO CORRESPONDING NAME FOUND"

PRINT"PERHAPS THE SPELLING IS WRONG"

PRINT"WI WILL PRINTOUT SIMILAR ENTRIES"

POKE 8885,114:POKE 886,34

FOR X=1 TO EN

IF LEFTS (SN$(X) ,3)=LEFTS (DT$,3) THEN V=V+1:H(V)=X

NEXT X

IF V<sf THEN 1819

PRINT"MI CANNOT FIND IT PLEASE RE-ENTER"

RETURN

PRINT" M"

PRINT"No.("

FOR X=l TO V

P=H (X)

PRINT P;" ";CNS(P);SNS(P);" ";ADS (P)

NEXT X

RETURN
REM ***** *CHANGES#X*****

PRINT TAB(8);"1 ";CNS (X)

PRINT TAB(8);"2 ";SNS$(X)

PRINT TAB(8);"3 ";ADS$ (X)

PRINT TAB(8);"4 "; TNS (X)

PRINT TAB(8);"5 "+;PCS (X)

PRINT TAB(8);"6";C(X)

PRINT

INPUT"No. OF LINE TO CHANGE (IF O/K TYPE @)";N
IF (N<f)+(N>6) THEN PRINT"#":GOTO 19798

IF N=$ THEN RETURN
PRINT "(NN******PRESS 'CR' WHEN CORRECTED******"
PRINT SPC (38)
ON N GOTO 2930,2848,2058,2869,2079,2089

51

52

2939

2949

2659

2962

2972

2980
2099

2109
2119

2126

2139

2149

2159

2169

2179

2182

2198

2228

2219

2220

2239

2249

2250

2266

2279

2286

2299

2369

2319

2329

2332p

2349

2359

2360

237G

2389

INPUT"(NIM6st NAME ";CNS(X) :PRINT"|Q":CNS (X) =
CNS (X)+" ":GOTO 1899

INPUT" AIMYMYMYLASTNAME ";SNS$(X):PRINT"Q":GOTO 1899

INPUT"[NNMIMINo. & ST. ";AD$S(X):PRINT"(C":GOTO 1899
INPUT"AYYAYNTN. & CY. ";TNS(X):PRINT"|C":GOTO 1899

INPUT"(YMITELEPHONE ";PC$(X):PRINT"C":GOTO 1899

INPUT "HYYUSER CODE ";C(X):PRINT"Q":GOTO 1899
REM KAKKKEKEKOAVE DATAX* * ****

PRINT"(GPRESS 'CR' WHEN DATA TAPE IS REWOUND"

GETZ$:IF ZS="" THEN 2119

IF ASC(Z$)<*102 THEN 2119

WOPEN"MAIL LIST DATA"

PRINT/T EN

FOR X=1 TO EN

PRINT/T CNS (X) ,SN$(X) ,AD$(X) , TNS (X) ,PCS$ (X) ,C (X)

NEXT X

CLOSE:GOTO 519

DATA121,213,245,295,174,34,295,15,24,241,145,48,1,175,
129,71,227,295

DATA1,24,235,295,1,24,128,176,49,8,26,199,35,19,32,2,

16,248,245,8,214

DATA176,49,26,61,49,23,61,49,25,61,40,22,61,49,24,61,

4f8,21,61,49,23,61

DATA4$,25,241,48,32,24,25,241,32,22,24,25,241,56,17,24,
6,241,56,17,24

DATA1#,241,49,7,24,19,241,56,7,24,232,17,38,22,24,3,17,
25,22,285,26,24

DATA225,295,123,35,195,91, 34

REM **INPUT MEM SIZE ON NEXT LINE

SZ=48

LM= (SZ+4) *1924-111

LIMIT LM

FOR N=LM TO LM+119

READ A

POKE N,A

NEXT N

BH=INT(LM/256) :BL=INT (LM-256*BH+9.5)

POKE 8895,BL:POKE 8896,BH |

PRINT" "

PRINT "Ppy* x x k OM

PRINT "bpp* Kk Ok kek ok kN

PRINT"DpbI* kK Ok KKKKK Ok ORM

2398 PRINT"DPp* x x kok KM

2498 PRINT"pphs k ox kok KKKKEN

2418 PRINT:PRINT

2428 PRINT" * kK KKKK KKKKEN

2438 PRINT" x k x mM

2448 PRINT" * k kK aN

2459 PRINT" BBPSSSEPR* * k oxM

2464 PRINT "BBBSSS>Ppi* * * * * k kkKKKK kn

24798 RETURN

V
i

If you have requested a search for a name and the program

has not found it, then it will search for similar names that

start with the same three letters, and printout all the names

that it finds. If you wish to alter this, to perhaps names

which only start with the same letter instead of the first

three, then change line 176@. At the moment it reads:-

IF LEFTS (SN$(X) , 3) =LEFTS (DTS, 3) THEN V=V+1:H(V) =X

Change to:-

IF LEFTS (SNS (X),1)=LEFTS (DTS,1)THEN V=V+1:H(V) =X

The program could be tightened up by entering more

statements on each line, but for clarity and legibility

it should be typed in as shown in order to assist any changes

that you wish to make.

53

54

7.2 Stock Control Program

The following program which deals with Stock Control,

also demonstrates the file handling aspects of the Sharp, and

is capable of maintaining records for up to 256 different

categories of stock. It does not pretend to be capable of

running a large business, but could easily be used in keeping

smaller records and recording the relevant data on tape.

Tf one runs this program using data on tape just imagine how

fast it would run if one was uSing Discs, which for any serious

user is a natural progression. Nevertheless if one can be

patient while the data is loading it works quite adequately.

The first time you run the program you will answer no

'N' to the 'IS THERE DATA ON TAPE! prompt, and the program

will jump to the menu and display a group of options.

Selection of option 2 will allow you to commence entering

the stock you hold, afterwhich any of the options can be

selected.

At any time you may return to the menu by entering @ (zero).

If you wish to finish and have not previously recorded the

data you have entered, you will be reminded of the fact and

asked if you wish to save data. If you reply 'Y' the program

will return to the menu in order to allow you to select option

8, ‘SAVE DATA' ,otherwise the program will finish.

If while testing the program you wish to BREAK and subsequently

restart, enter GOTO250 , and you will skip the initialisation

sequence and go directly to the menu.

When entering the TRADE price of a stock item always type in

the price excluding VAT, you will be prompted for the current

rate of VAT afterwards. If the item carries no VAT enter @ when

prompted.

If at any time you find the list contains an item of stock which

you no longer carry, it can be changed to an alternative by

entering option 7 'CHANGE NAME'.

The mobile cursor displayed on the menu is controlled in lines

398 to 498 within a loop.

Change line 1948 to a name of your choice.

The most used messages are contained in Strings in lines 1949 to

2829.

199

11g

126

13¢

14g

158

162

176

189

196

266

216

226

232

248

259

262

270

286

296

389

316

326

336

349

352

362

376

382

399

4 D9

416

429

439

44g

459

****kSTOCK CONTROL PROGRAM****

GOSUB 186%:GOTO 159

RS = @:GET ZS:IF ZS = ""THEN 119

IF ZS = "Y" THEN RS = 1:RETURN

IF Z$ = "N" THEN RS =2:RETURN
GOTO 119

PRINT"CIS THERE DATA ON TAPE? (Y/N) ":USR(62)

GOSUB 119

ON RS GOTO 18,259

PRINT'(INSERT DATA TAPE"

ROPEN "STOCK DATA"

INPUT/T DAS,EN

FOR N = 1 TO EN

INPUT/T SN(N) ,BNS$(N) ,TP(N) ,SP(N) ,VT(N) ,SA(N)

NEXT N

CLOSE

IF DAS = ""THEN DAS = "S2/60/6"

PRINT AS:PRINT BS

PRINT ES;DAS

PRINT" ---33-2nnnnnnnnnnnnn"

PRINT"NPppppkey 1 for TOTAL STOCK PRINTOUT"

PRINT" 2 ' NEW STOCK ENTRIES"

PRINT" ' 3. ' STOCK BOUGHT"

PRINT" 4 ' PRICE CHANGES"

PRINT" ' 5 ' §TOCK SOLD"

PRINT "NW>pPbpH ' 6 ‘' STOCK TAKE CHECK"

PRINT "NDPPRPH ' 7 ' CHANGE NAME"

PRINT "W>PbiPH | 8 ' SAVE DATA"

PRINT"NPPBPH | 9 ' FINISH"

PRINT"\DPPPPHplease enter option (1 to 9)":USR(62)

PRINT"HNWM":C = @

GET ZS:IF VAL(ZS$)>@ THEN 439

PRINT "WDpPPPREBAID";:FOR X = 1 TO 15%:NEXT X:PRINT"":
C = C+l:IF C = 9 THEN 399

GOTO 499

Z = VAL(ZS)

IF (Z<1)+(Z>9) THEN 49

ON Z GOTO 469,7828,998,1238,1328,14598,1628,17989,1819

55

56

469

479

489

499

5 BP
519

526

539

549

559

566

572

589

599

622
616

629

636

649

659

662

679

689

699

799
719

726

736

746

759

768

770

789

796

896
81g

826

PRINT AS:PRINT BS

PRINT"DATE ";DAS

TT = @:TR = O:TV = O:RV = P:VD =1

PRINT SNS;TAB(22);:TPS;SPS;SAS

FOR N = 1 TO EN

PRINT SN(N);TAB(5);BNS(N);

PRINT TAB(24-LEN(STRS (INT(TP(N)))));TP(N);

PRINT TAB (398-LEN(STRS (INT(SP(N)))));SP(N);

PRINT TAB(38-LEN(STRS (INT (SA(N)))));SA(N)

TT = TT+(TP(N) *SA(N)):TR = TR+(SP(N) *SA(N))

IF VT(N) = 2 THEN 599

TV = TV+INT((VT (N) *TP(N) *SA(N)) *102%) /109

RV = RV+INT((SA(N) *SP(N) *10f) -(SA(N) *SP(N) /(VT(N) +1) *199)) /19¢

IF INT(VD/29)=VD/2 THEN PRINT"WTHERE IS MORE PRESS
ANY KEY":USR(62):GOTO 619

GOTO 639

GET ZS:IF ZS = "" THEN 619

PRINT "ff" ; SPC (38) ; "YN"

VD = VD + 1:NEXT N

PRINT LS

PRINT "NPPPPPppPISTOCK VALUE £";

PRINT TAB (26-LEN (STRS (INT(TT))));TT

PRINT "PPHPSTOTAL WITH VAT £";

PRINT TAB (26-LEN (STRS (INT (TT+TV)))) ;TT+TV

PRINT"N>pPpPPRETAIL RETURN £";

PRINT TAB(26-LEN (STR$(INT(TR))));TR

PRINT"SpPPPPPVAT CONTENT £";

PRINT TAB (26-LEN (STR$ (INT(RV))));RV

PRINT"WMNET PROFIT EXPECTED £";

PRINT TAB (26-LEN (STRS$ (INT (TR-RV-TT)))) } TR-RV-TT

PRINT"Sbpbpb>plpress any key to continue":USR(62)

GET Q$:IF QS = "" THEN 769

GOTO 259

PRINT'(QNEW LINES"

PRINT LS

N = EN+1:EX = @

PRINT"STOCK No. ";N:SN(N)=N

PRINT"MZERO RETURNS TO MENU"

839

849

859

869

879

889

899

9p

919

929

939

949

959

969

9796

989

999

1 PPP

1919

192g

1939

1049

1059

1f6¢

1279

1089

1999

119¢

1119

1129

1139

1149

115g

1169

1179

INPUT"DESC.OF GOODS ";NNS

IF LEN(NNS)>17 THEN PRINT"17 LETTERS IS MAX PLEASE
ABBREVIATE":GOTO 839

IF NNS = "9" THEN 259

BNS (N) =NNS

INPUT" AMOUNT BOUGHT ";SA(N)

INPUT"VAT RATE 3 "-VT(N) : VI (N) =VT(N) /199

PRINT "WAAAMAWPAAIAZAAIn pence"
INPUT"TRADE PRICE ";TP(N):TP(N)=TP(N) /10@

INPUT"SELLING PRICE ";SP(N):SP(N)=SP(N)/199

IF SP(N)<TP(N) THEN PRINT DS:GOSUB 2949

PRINT H$S:GOSUB 119

IF (EX=1)*(RS=1) THEN 259

IF RS=l1 THEN EN = EN+1:GOTO 979

IF RS=2 THEN 819

PRINT "WMWARE THERE ANY MORE TO ENTER? (Y/N) ":USR(62):GOSUB 119

ON RS GOTO 789,259

PRINT'QSTOCK BOUGHT"

PRINT LS

INPUT"INPUT STOCK No. (zero to quit) ";N

IF N = @ THEN 259

IF N>EN THEN PRINT FS:GOTO 1999

PRINT"NM";SNS$;SN(N) ; "Bl"; BNS (N)

PRINT"NMif stock no. does not match type 9"

PRINT"STOCK HELD WAS ";SA(N)

INPUT"AMOUNT BOUGHT ? ";AM

IF AM = @ THEN 199¢

SA(N)=SA(N) +AM

PRINT"STOCK HELD IS NOW ";SA(N)

PRINT"NWWIS TRADE PRICE STILL £";TP(N);" (Y/N) ":USR(62) :
GOSUB 119

IF RS = 1 THEN 19990

INPUT"NEW TRADE PRICE (in pence) ";J:J=J/199:PRINT"e";0;
">" ;HS:GOSUB 119

IF RS = 2 THEN 1119

TP(N) = J

PRINT"WIS SELLING PRICE STILL £";SP(N);"(Y/N)":USR(62):
GOSUB 119

IF RS = 1 THEN 1999

57

58

1182

1199

1299

1219

1229

1239

1249

1259

1269

1279

1289

1299

1399

1319

132g

1332

1349

1359

1369

1379

1389

1399

1499

1419

1429

1439

1449

1459

1462

1479

1489

1499

1529
1519

1529

1539

INPUT"NEW SELLING PRICE (in pence)";K:K=K/199

IF K<TP(N) THEN PRINT D$:GOSUB 2040

PRINT"£";K; "Pl" ;H$:USR(62) :GOSUB 1198

IF RS = 2 THEN 1189

SP(N)=K:GOTO 1999

PRINT'(GPRICE CHANGES"

PRINT LS

INPUT"N|ISTOCK No.OF ITEM (zero to quit) ";N

IF N = @ THEN 259

IF N>EN THEN PRINT FS$:GOTO 1259

PRINT"W";SN(N) ;BNS (N)

PRINT"NJTHE SELLING PRICE IS £";SP(N)

INPUT"WINPUT NEW PRICE (in pence)";J:IF J = @ THEN 1259

SP(N)=J/1@@:GOTO 1249

PRINT"ICISTOCK SOLD"

PRINT L$

INPUT" INPUT STOCK No. (zero to quit) ";N

IF N = @ THEN 258

IF N>EN THEN PRINT F$:GOTO 1339

PRINT SN(N) ;BNS(N)

PRINT H$:GOSUB 119

IF RS = 2 THEN 1339

PRINT"MSTOCK WAS ";SA(N)

INPUT" INPUT AMOUNT SOLD ";J

IF J>SA(N) THEN PRINT CS$:GOSUB 249:GOTO 1419

SA (N) =SA(N) -J

PRINT"MSTOCK IS NOW ";SA(N):GOTO 1339

PRINT"(CSTOCK TAKE CHECK"

PRINT LS

PRINT SNS$;TAB(23);"WAS IS SOLD"

FOR N = 1 TO EN

PRINT SN(N) ;TAB(5) ;BNS(N) ;TAB(25-LEN(STRS (INT(SA(N)))));
SA(N) ;TAB(27) ;

INPUT J:IF J>SA(N) THEN PRINT G$:GOSUB 2949:GOTO 1499

CR=SP(N)*(SA(N)-J)+CR

IF VT(N)=9 THEN 1549

VA=VA+INT (((SA(N) -J) *SP (N) *18) -((SA(N) -J) *SP(N) /(VT(N) +1)
*102)) /188

1542

1552
1562

1572

1589

1599

1682

1612

1629

1632

1642

1652

1660

1672

1689

1699

1769

1719

172g

1739

1749

1758

1762

1772

1782

1799

1899

1819

182g

183¢

184g

185g

1866

187¢

188@

1896

1906

PRINT"M\" ; TAB (34) ;SA(N)-J:SA(N) =J

NEXT N

PRINT"WTOTAL SALES £";TAB(17-LEN(STRS (INT(CR))));CR

PRINT"WMVAT CONTENT = £€";TAB(17-LEN(STRS$ (INT(VA))));VA

PRINT "";LS |

PRINT"WWPRESS ANY KEY TO CONTINUE":USR(62)

GET QS:IF Q$ = "" THEN 1699

GOTO 259

PRINT"(CHANGE NAME"

PRINT L$

INPUT"STOCK No.OF ITEM TO ALTER (zero to quit) ";N

IF N = § THEN 258

IF N>EN THEN PRINT F$:GOTO 1639

PRINT:PRINT BN$(N);H$:GOSUB 119

IF RS = 1 THEN EX = 1:GOTO 839

GOTO 1639

PRINT"QBEFORE SAVING DATA PLEASE ENTER"

INPUT"TODAYS DATE ";DA$
PRINT HS;DAS:USR(62):GOSUB 119

IF RS = 2 THEN 1719

PRINT"|GINSERT DATA TAPE & REWIND"

WOPEN"STOCK DATA"

PRINT/T DAS,EN

FOR N = 1 TO EN

PRINT/T SN(N) ,BNS(N) ,TP(N) ,SP(N) , VT(N) ,SA(N)

NEXT N

CLOSE:DS = 1:GOTO 259

IF DS<>1 THEN PRINT"YOU HAVE NOT SAVED DATA DO YOU WANT TO?":
GOTO 1839

END |

USR(62):GET Z$:IF ZS = "" THEN PRINT"(\";SPC(39) ;"A":GOTO 1819

IF 2S = "N" THEN 1829

GOTO 259

PRINT "(C]"

PRINT "SPPSSPSSSPPSPRISTOCK CONTROL"

FOR X = 1 TO 5:USR(62)

FOR Y = 1 TO 5Q0:NEXT Y

POKE 59555,@:FOR Y = 1 TO 29@:NEXT Y

09

60

1918

192¢

1939

1940

1959

1969

1972

1989

1999

2920
20190

2928
2039

2049

2052

2069

POKE 59555,1:NEXT X

DIM SN(255) ,BNS(255) ,TP (255) ,SP(255)

EN=@:TT=@:TR=@:TV=9:CR=9

AS="|CBPPPPPRBPPPIMZ-8 GK SERVICES"
B$="(bSppEppE>p-—_———————
C$="**HOW CAN YOU SELL MORE THAN YOU

DS="**HOW CAN YOU SELL FOR LESS THAN

ES="DATE OF LAST ENTRY ":FS="NO SUCH

G$="STOCK CANNOT INCREASE. .RE-ENTER"

H$="BJIS THIS CORRECT (Y/N)"

L$="

,VT (255) ,SA(255)

HELD"

YOU BUY"

ENTRY"

SNS="No.":TPS=" TRADE ":SPS=" SELL "

RETURN |

FOR X = 1 TO 3

POKE 59555,9:USR(62):FOR Y = 1 TO 50

POKE 59555,1:FOR Y = 1 TO 29M:NEXT Y

:SAS="" AMT"

sNEXT Y

,A:RETURN

to Hexadecimal,

Appendix

The following listing converts either Decimal numbers

or Héexadecimals to Decimal.

4999 INPUT"ENTER NUMBER FOLLOWED BY (H or D)";AS
4919 IF RIGHTS(AS,1)="H" THEN 4949 |

4929 IF RIGHTS(AS,1)="D" THEN 4129
4938 GOTO 4¢9¢

4849 AS=LEFTS(AS,4)
4959 J=$:FOR Z=1 TO LEN(AS)
496@ K=ASC(MIDS(AS,Z,1))-48
4070 IF K<1@ THEN 4199
408 K=K-7
4999 IF K>15 THEN 4999

4190 J=I*16+K:NEXT
4118 PRINT"=";J;" DEC":GOTO 4999

4129 AS=LEFTS (A$,LEN(A$)-1):CS=""
4138 B=VAL(AS):IF B» 65535 THEN 4969
4149 C=65536
4158 FOR A=l TO 4:C=C/16:K=INT (B/C)
4168 GOSUB 4199:B=B-K*C:NEXT A
4178 K=B
4180 PRINT"=";CS;" HEX":GOTO 4999
4198 IF K>9 THEN KS$=CHRS(K+55):GOTO 4219

4208 KS=STRS (K)

4218 CS$=C$+K$:RETURN

There follows a conversion table for Hexadecimal to Decimal.

The first column is the Hex code, and the second and third is the

Decimal equivalent. To illustrate it's use we will look at the

Hex number at the end of the Monitor work area, 11IFF Hex as shown

on page ll. To calculate the decimal equivalent we take the first

two numbers, 11, known as the Most Significant Byte (M.S.B), and

convert it. As can be seen the the eqivalent is 4352 dec. We then

take the second pair of numbers, the Lowest Significant Byte(L.S.B)

which is FF Hex, and on conversion will see that it represents the

decimal number 255. Adding these two numbers together (4352+255) will

give us the decimal number of 4607, which is equivalent to l11FF Hex.

61

62

DEC DEC

HEX H pb Dt{H DD D IH DB DAH DD OD

*256 * 256 *256 * 256 *256

00 00000 0/34 13312 52 168 26624 10449C 39936 156/D0 53248 208
O01 00256 1135 13568 5369 26880 105/9D 40192 157{D1 53504 209

02 00512 2136 13824 54 §6A 27136 106] 9E 40448 158;/D2 53760 210
03 00768 3137 14080 55/6B 27392 107}9F 40704 159;D3 54016 211
04 01024 4138 14336 56/6C 27648 108{;A0 40960 160) D4 54272 212
05 01280 5/39 14592 57/6D 27904 109;/Al 41216 161/D5 54528 213
06 01536 613A 14848 58/6E 28160 110\/A2 41472 162|D6 54784 214
07 01792 713B 15104 59/6F 28416 111{)A3 41728 163|D7 55040 215
08 02048 813C 15360 60/70 28672 112|A4 41984 164|D8 55296 216
09 02304 91/3D 15616 61/71 28928 113/A5 42240 165)D9 55552 217
OA 02560 10/3E 15872 62/72 29184 114)/A6 42496 166/DA 55808 218
OB 02816 11/3F 16128 63173 29440 115/A7 42752 167!DB 56064 219
OC 03072 12)40 16384 64/74 29696 116/A8 43008 168; DC 56320 220
OD 03328 13/41 16640 65;75 29952 117!A9 43264 169|/DD 56576 221
OF 03584 14/42 16896 66/76 30208 118;AA 43520 170|DE 56832 222
OF 03840 15/43 17152 671/77 30464 119/AB 43776 171} DF 57088 223
10 04096 16/44 17408 68178 30720 120/AC 44032 172)E0O 57344 224
11 04352 17/445 17664 69/79 30976 121/AD 44288 173]}El1 57600 225
12 04608 18/46 17920 70|7A 31232 122);AE 44544 174} E2 57856 226
13 04864 19;47 18176 71/7B 31488 123/AF 44800 175;E3 58112 227
14 05120 20/48 18432 72/7C 31744 124/B0O 45056 176|E4 58368 228
15 05376 21);49 18688 73]7D 32000 125;|Bl 45312 177/E5 58624 229
16 05632 22)4A 18944 74|7E 32256 126|)B2 45568 178!E6 58880 230
17 05888 23;4B 19200 75|7F 32512 127|}B3 45824 179} E7 59136 231
18 06144 24;/4C 19456 76/80 32768 128|B4 46080 180) E8 59392 232
19 06400 25;4D 19712 771/81 33024 129|B5 46336 181/E9 59648 233
1A 06656 26/4F 19968 78}|82 33280 130|}B6 46592 182|EA 59904 234
1B 06912 27)4F 20224 79/83 33536 131/B7 46848 183])EB 60160 235
1C 07168 28,50 20480 80/84 33792 132|B8 47104 184/EC 60416 236
1D 07424 29/51 20736 81/85 34048 133/B9 47360 185)/ED 60672 237
1E 07680 30/52 20992 821/86 34304 134/BA 47616 186|EE 60928 238
IF 07936 31,53 21248 83/87 34560 135/BB 47872 187|EF 61184 239
20 08192 32,54 21504 84/88 34816 136/BC 48128 188/FO 61440 240
21 08448 33),55 21760 85/89 35072 137|BD 48384 189/ Fl 61696 241
22 08704 34/56 22016 86/8A 35328 138/BE 48640 190); F2 61952 242

23 08960 35,57 22272 87/8B 35584 139|BF 48896 191]F3 62208 243
24 09216 36,58 22528 88:18C 35840 140/CO 49152 192/F4 62464 244

25 09472 37/159 22784 89/8D 36096 141/Cl 49408 193|/F5 62720 245
26 09728 38;)5A 23040 90/;8E 36352 142/C2 49664 194/F6 62976 246
27 09984 39/5B 23296 91/8F 36608 1431C3 49920 195, F7 63232 247
28 10240 40;5C 23552 92;)90 36864 144/C4 50176 196|F8 63488 248
29 10496 41;5D 23808 93/91 37120 145/C5 50432 197|/F9 63744 249
2A 10752 42\)5F 24064 94/92 37376 146;/C6 50688 198/FA 64000 250
2B 11008 43,)5F 24320 95)93 37632 147|C7 50944 199! FB 64256 251

2C 11264 44,)60 24576 96/94 37888 148;}C8 51200 200|/FC 64512 252
2D 11520 45/61 24832 97195 38144 149|/C9 51456 201{FD 64768 253
2E 11776 46,62 25088 98/96 38400 150/CA 51712 202|FE 65024 254
2F 12032 47/163 25344 99197 38656 151/CB 51968 203|FF 65280 255
30 12288 48,64 25600 100/98 38912 152/CC 52224 204
31 12544 49/65 25856 101/99 39168 153/CD 52480 205

32 12800 50/66 26112 102/9A 39424 154/CE 52736 206
33 13056 51);67 26368 103|9B 39680 155|/CF 52992 207

In each row the first column is the Hex code.
_The second row is the Decimal equivalent multiplied by 256 for
calculating the M.S.B.
The third row is for use with the L.S.B.

*

