
Z80ASM
Z80 Relocating Macro Assembler

USER'S GUIDE

Copyright (c) 1984 by
SLR Systems

1622 N. Main Street
Butler, PA 16001
(412) 282-0864

 COPYRIGHT NOTICE

This software product is distributed for the use of the original
purchaser only, and no license is granted herein to copy,
duplicate, sell or otherwise distribute to any other person,
firm, or entity. Furthur, this software product and all forms of
the program are copyrighted by SLR Systems, and all rights are
reserved.

 TRADEMARKS

Wherever referred to throughout this manual, CP/M and Z80 are
registered trademarks of Digital Research and Zilog, Inc.,
respectively.

Z80 Relocating Macro Assembler Introduction

INTRODUCTION

Z80ASM is a powerful relocating macro assembler for Z80-based
CP/M systems. It takes assembly language source statements from
a disk file, converts them into their binary equivalent, and
stores the output in either a core-image, Intel hex format, or
relocatable object file. The mnemonics recognized are those of
Zilog/Mostek. The optional listing output may be sent to a disk
file, the console and/or the printer, in any combination. Output
files may also be generated containing cross-reference infor-
mation on each symbol used.

FEATURES

 1) One pass operation (optional second pass)

 2) Powerful nested macros, conditionals, and include files

 3) Relocatable format allows extended math on externals
 and relocatables

4) Up to 15 different data, program, and common areas

5) Zilog/Mostek mnemonics

6) Throughput of over 6000 Lines/Minute (8"SS/SD, 2Mhz)

 7) Optional alphabetized symbol table

 8) Optional alphabetized cross-reference

 9) Directly generates a .COM, .HEX, or .REL file

 10) Labels Significant to 16 characters

 11) Supports time and date in listing

 12) User Configurable

 13) Supports ZCPR3 and CP/M+ error reporting

Page i-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Table Of Contents

TABLE OF CONTENTS

 Section - Page

 Introduction i-2

 Features i-2

 Table of Contents i-3

 Running the Assembler 1-1

 Command Line Options 1-3

 Source Line Format 2-1

 Expressions 2-4

 Relocatability 2-7

 Pseudo Operations 3-0

 Program Counter Maintenance 3-1

 Data Definition and Generation 4-1

 Conditional Assembly 5-1

 Macro Facility 6-1

 Listing Controls 7-1

 Miscellaneous 8-1

 APPENDIX A - Error Message Summary A-1

 APPENDIX B - Zilog Z80 Instr. Set B-1

 APPENDIX C - Intel HEX file format C-1

 APPENDIX D - CONFIG Utility D-1

 APPENDIX E - ASCII Table E-1

 APPENDIX F - Warranty F-1

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page i-3

Z80 Relocating Macro Assembler Running The Assembler

RUNNING THE ASSEMBLER

To run the assembler, type

 A > Z80ASM [COMMAND][,COMMAND]

where the brackets are not really typed, and what is enclosed in
them is optional. If no COMMAND's are given on the initial
command line, Z80ASM will prompt for a command line with a
percent (%) sign. Z80ASM allows as many commands to be given as
will fit on a 128 character line. Commands are separated by a
comma. Note that input from the prompt is via the Read Console
Buffer system call, so that commands may be passed through a
SUBMIT file. However, there is a better way...

COMMANDS are defined as follows:

<Filename>[.<Drive >][/<0ption>]

where <Filename> is the source file with the (default) extension
 Z80.

 . is a separator used only when <Drive> is
 present.

 <Drive> is used to modify the default drive selection.
 The default condition selects the CP/M default
 drive for source file, enables binary output to
 the default drive, and enables the disk listing
 driver to the default drive. <Drive> is from
 one to three letters (@-P, where @ is the
 default drive) defined as follows:

 first letter: drive on which <Filename>.Z80 is located

 second letter: selects drive to receive output file -
 to disable binary file generation, use a
 Z in this location. If this letter is
 missing, output will go to the default
 drive.

 third letter: selects the drive or device on which to
 place the listing output. If selected,
 the cross-reference and symbol table
 also go to this device. To send the
 output to a disk file, use a valid drive
 letter in this location. To output just
 to the console, use an X; Y selects
 output to the list device. If no
 listing-type output is desired, use a Z
 in this spot. If this letter is
 missing, output will go to the default
 drive.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 1-1

Z80 Relocating Macro Assembler Running The Assembler

 / is optional, but must be used when <0ption> is
 used.

 <0ption> is one or more of the following letters, in any
 order:

 A : absolute mode. Output file is COM.

 C : enables output to the console.

 D : don't do LOWER to UPPER case conversion.

 E : execute LOWER to UPPER case conversion.

 F : selects full listing (2 passes through
 source).

 H : generate HEX file as output.

 I : special indirect command file.

 K : kill all console I/O and detach.

 L : list output partial (1 pass through
 source).

 M : generate Microsoft REL file as output.

 N : new OPTION byte.

 P : enables output to the list device.

 Q : quit, abort.

 R : generate standard REL file as output.

 S : generate alphabetized symbol table.

 T : input time and date string.

 U : declares undefined symbols as external.

 X : generates cross-reference.

 Y : disable cross-reference.

 6 : selects M-Rel output, 6 significant.

 7 : selects M-Rel output, 7 significant.

Page 1-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Running The Assembler

For example, assuming standard default conditions:

 A>Z80ASM EXAMPLE/F,DUMP.ABZ/SXRP

tells Z80ASM to assemble A:EXAMPLE.Z80, create A:EXAMPLE.COM as
the binary output, and create A:EXAMPLE.LST as the second pass
full listing output. Next assemble A:DUMP.Z80, creating an S-REL
file on drive B, and generating a symbol table and cross-
reference on the printer.

Efficiency Hints

1. Use one-pass mode wherever possible. The only time two pass
mode is necessary is generating a cross-reference, or a listing
with forward references resolved.

2. If generating a one-module program, generate the COM or HEX
output directly from the assembler.

3. For multiple module work, use an indirect file. For most
assemblies, a major percentage of the assembly time is merely
loading in the assembler. Z80ASM will assemble all the files in
an indirect file without reloading the assembler.

4. If you CONFIGure in a 2nd pass listing or cross-reference, you
will ALWAYS get 2-pass mode unless you use the proper switches to
disable it (/N).

Let's talk in more detail about the command line options.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 1-3

Z80 Relocating Macro Assembler Command Line Options

COMMAND LINE OPTIONS

Command line options are used to modify the default operating
characteristics of Z80ASM. This is the default mode as supplied
by SLR Systems (the default mode may be modified by the user by
running the CONFIG utility):

 Generate a core-image .COM file on one pass through the
 source, converting lower-case items to upper-case,
 generate no listing output, no symbol table output, and
 no cross-reference output.

So, if you wanted to assemble the file DUMP.Z80 (included on your
distribution diskette) to create the file DUMP.COM, both on drive
B:, with no other output, you would type

 A>Z80ASM DUMP.BB

Note that the Z was not needed in the listing drive spot since no
listing-type output was requested. If the files were on drive A,

 A>Z80ASM DUMP

would produce the desired result.

There are many other available options though, and this section
describes them in a little more detail.

 A

 The A option selects absolute mode operation and a
 default output file type of COM. This is the
 standard default mode, so it will not need to be
 used unless the default mode has been modified.

 C

 The C option enables the console output driver.
 This has no effect in itself, but if any listing,
 symbol table or cross-reference outputs are
 selected, these items will be output to the con-
 sole device (Error messages are always enabled to
 the console, unless /K is used).

Page 1-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Command Line Options

 D
 The D option disables LOWER to UPPER case conver-
 sion. This is used when it is desired to have
 upper and lower case characters treated differ-
 ently, such as when assembling output from a C
 compiler. Note that when this is in effect,
 reserved words (mnemonics, registers, and pseudo-
 ops) may be in any case or mixture. .LIST may be
 redefined as a macro, and .LIST will still be
 recognized as a pseudo-op.

 E
 The E option enables LOWER to UPPER case
 conversion. This is the standard default mode.
 Note that the conversion only affects characters
 not inside quoted strings, and that lower case
 characters are still lower case in a list file.

 F
 The F option selects FULL listing mode. This
 option forces Z80ASM into 2-pass mode, generating
 a listing output on the second pass to any and all
 enabled devices. Note that by default the disk
 driver is enabled.

 H
 The H option selects a binary output type
 compatible with the Intel HEX format.

 I
 The I option is a special case option used for
 indirect command file input. If this option is
 used, it can be the only option specified. The /I
 option causes Z80ASM to read the file
 <FILENAME>.SUB on the default drive (or the
 selected source drive) for its command lines.
 This is similar to using SUBMIT and XSUB except
 that 1) it is much faster, 2) it can be used from
 within a SUBMIT file, 3) it can be used without
 XSUB and SUBMIT leaving more RAM available for the
 assembly, and 4) it can be used while A: is not
 the default drive.

 K
 The K option kills all console I/O, including
 error messages. Also, under multitasking systems,
 a 'detach console' is issued slipping Z80ASM into
 the background.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 1-5

Z80 Relocating Macro Assembler Command Line Options

 L

 The L option selects one-pass listing mode. This
 listing is similar to the F-mode full listing
 except that forward references list as undefined
 in the generated code columns. Note that by
 default the output will go to the default disk
 drive.

 M

 The M option forces relocatable mode. The binary
 output file has the default extension REL, and the
 format generated is compatible with the Microsoft
 relocatable format.

 N

 The N option is used to start over with new
 options. For instance, if you have M-REL format
 with symbol table and XREF selected from CONFIG, N
 will delete those options and put you back to the
 standard default mode.

 P

 The P option enables the PRINTER or CP/M list
 device output driver. Any listing, symbol table,
 or cross-reference output selected will be sent to
 the CP/M list device. Error messages will also be
 sent to the printer, even if no other listing
 output has been selected.

 Q

 The Q option is used to abort interactive command
 line acceptance. It is identical in function to a
 control-C, but it may also be used at other than
 the beginning of the line, from SUBMIT files, and
 from INDIRECT command files, all places where ^C
 is illegal.

 R

 The R option is used to select relocatable
 operation. The output file type is REL, and the
 format generated is SLR Format.

Page 1-6 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Command Line Options

 S

 The S option selects the generation of an
 alphabetized symbol table. The output goes to all
 enabled devices. The output contains symbol
 names, types, and values. The number of symbols
 per line depends on the selected page width.

 T

 The T option is used to specify a time and date
 string for use in generating listings. Any fol-
 lowing characters (up to 16) up to the next comma
 or carriage return are used as the time and date
 string. This option must be used as the last
 slash option. The input string is used automati-
 cally for subsequent assemblies unless overridden
 by another T option, or Z80ASM is reloaded.

 U

 The U option (ignored in absolute mode) instructs
 Z80ASM to automatically declare any UNDEFINED
 labels as externals to be resolved by the linker.

 X

 The X option selects cross-reference generation.
 This option forces two-pass mode, and the output
 will go to all enabled devices.

 Y

 The Y option deletes the XREF option if it was
 already selected (like from CONFIG).

 6

 The 6 option performs an implied M option, and
 selects 6 significant character generation for
 globals and externals. This overides the default
 selected by CONFIG.

 7

 The 7 option does the same as 6 except that Z80ASM
 will generate 7 significant characters for globals
 and externals.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 1-7

Z80 Relocating Macro Assembler Command Line Options

ASSEMBLER RUNTIME CONTROL

There are several operations available at the console while
Z80ASM is in operation. For instance, at any time, a ^C
(Control-C) may be typed, causing Z80ASM to abort the assembly of
the current file. This allows you to abort the assembly of a
large file that had the wrong command line options, without
rebooting.

Assembly operation may be temporarily halted with a ^S, and
resumed with a ^Q.

The Console driver may be enabled and disabled (toggled) with a
^Z, and the list device driver may be toggled with a ^P. Note
that these may be used whether or not their drivers were enabled
in the command line. These are very useful for watching just
some of the assembly where errors are occurring, or printing out
just part of the assembly without inserting LIST and NLIST
pseudo-ops in the source (if you are quick!).

A '?' causes Z80ASM to display the current filename and line
number in the file so you can see exactly how things are
progressing.

Any other character is merely echoed on the console and ignored.

Page 1-8 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Source Line Format

SOURCE LINE FORMAT

Source input to the assembler comes from a disk. Each line of
input must be less than 128 characters, and must be terminated by
a CR-LF sequence. Input lines follow the following syntax:

 [Line #] [Label[:]] [Operation] [Parameters] [Comment]

 where anything inside brackets is optional.

Each line is processed one at a time. First, if lower to upper
case conversion is enabled (as in the standard default case), any
lower case characters not inside quotation marks are converted to
upper case, so that upper and lower case characters are
interchangeable for labels, opcodes, etc.

Line #

The line number is an optional field which contains a valid
number. This item is optional and is ignored by the assembler.

Label

Labels or symbols are made up of characters from the following
set:

 % $? . @ 0-9 A-Z a-z _

The first character of a label must not be from 0-9.

Symbols may be any length, however only the first 16 characters
are significant. This rule holds true throughout unless M-REL
operation is selected, in which case sixteen characters are still
significant internally, but only six or seven (see CONFIG) are
passed to the linker for entry points and external references.
S-REL format allows full 16 significant characters on all
references.

The colon following a label is optional in most instances. Two
exceptions are 1) when the label is a reserved word, and 2) when
the label is defined as both a macro and a label. In both these
cases, the colon is required to distinguish the label from the
reserved word or macro reference.

The following are valid symbols used as labels:

 Label ??ERROR @spec
 Never_Again $12345 .ABCDEFGHIJKL

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 2-1

Z80 Relocating Macro Assembler Source Line Format

This example shows the colon used only where it is required:

 0100 CPIR MACRO XX ;Changes CPIR to a JP
 0200 JP XX
 0300 ENDM
 0400
 0500 Start
 0600 CPIR CPIR ;Means Jump to Label CPIR
 0700 CPIR: ;Colon skips scanning the
 0800 END ;Macro and reserved word
 0900 ;tables

Labels may start in any column.

Operation

This item can be one of the standard Zilog mnemonics for a Z80
instruction, one of the standard Z80ASM pseudo-ops, or a user-
defined macro instruction. The macro table is searched first,
allowing redefinition of any opcodes or pseudo-ops.

The standard Zilog mnemonics are defined well in other
publications, so we will not discuss them in too much detail
here, but several things should be pointed out.

For ease of use, Z80ASM will except long and short forms for the
8-bit operations. For instance, in Zilog mnemonics, to add 5 to
the accumulator, you say

 ADD A, 5

which makes sense. To add with carry the same thing, you say

 ADC A, 5

which still makes sense. Subtract with carry is the same way,
but Subtract without carry is different. It is used like this:

 SUB 5

which is not very consistent. At times it can be hard to
remember which form is needed.

Page 2-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Source Line Format

Z80ASM alleviates this problem of inconsistency by accepting both
forms for all 8-bit operations. For example,

 ADD A, 5 ;produces what you would expect
 ADD 5 ;produces the same thing
 ADC A, 5 ;Yep
 ADC 5 ;Same thing
 SBC A, 5 ;Again
 SBC 5 ;Same thing
 CP 0f0h ;generates a 0FEH, 0F0H
 CP A,0f0h ;so does this

are all acceptable statements to Z80ASM. Use whichever you wish.
However, for portability, you may want to adhere to the strict
syntax.

Another comment should be made about the operation field. If
Z80ASM is configured not to require colons on labels not starting
in column 1, there is an area of ambiguity if you type an
operation incorrectly. For instance, if you wanted the
instruction OTIR, but incorrectly entered it:

 OUTIR ;OUTPUT ENTIRE BLOCK

Z80ASM will not generate an error, will not generate the proper
code for OTIR, but will happily define a label OUTIR at that
location. The only way Z80ASM will catch an error like that is
if you do it twice, which will generate a 'previously defined'
symbol error. For this reason it is recommended that you select
colon requirements.

Parameters

These may be the operands required by the given opcode or pseudo-
op, or may be parameters to a macro instruction. Expressions and
macros will be discussed later.

Comments

Comments must start with a semicolon ';'. Everything on the line
after the semicolon is ignored by the assembler.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 2-3

Z80 Relocating Macro Assembler Expressions

EXPRESSIONS

Operands often consist of expressions. Expressions are merely
combinations of operators and operands. For example,

 1 3+5 -Start HIGH 0FE23h

are all valid expressions. Expressions can often get much more
complex than that. If there is more than one operator in an
expression, the expression is evaluated in the order of the
operator 'precedence'. This table lists all the available
operators, their functions, and their precedences.

 Operator Function Precedence

 - Unary Minus 1
 + Unary Plus 1
 NOT or ~ Bitwise NOT 1
 HIGH Take HIGH Byte 1
 LOW Take LOW Byte 1
 NUL Special NUL 1
 TYPE Returns Type 1
 * Unsigned Multiply 2
 / Unsigned Divide 2
 MOD Unsigned Modulo 2
 SHR or >> Shift Right 2
 SHL or << Shift Left 2
 + Add 3
 Subtract 3
 EQ or = Equal 4
 NE or <> Not Equal 4
 LT or < Less Than 4
 LE or <= Less Than or Equal 4
 GT or > Greater Than 4
 GE or >= Greater Than or Equal 4
 AND or & Bitwise AND 5
 XOR Bitwise XOR 6
 OR or | Bitwise OR 6

Some operators have equivalent forms, i.e.,

 XM & 3 is identical to XM AND 3

in all respects. Note that the spaces around the '&' are not
necessary, but are recommended to lessen the chances of confusion
in macro processing. Embedded spaces are allowed between any
items in an expression.

Default operator precedence may of course be overridden by use of
parentheses. Be careful not to use parentheses at both ends of
an expression unless you mean 'contents of'. For instance,

Page 2-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Expressions

 LD HL,(1+3)*(4+7) ;is treated as LD HL,(44)
 ;not LD HL,44 as you would expect.

Note also that the characters (, [, and { are equivalent, as are
),], and }, and may be used interchangeably. However, (and)
are recommended for transportability and future compatibility.

A special case of an expression is the null expression, valid
only in index register instructions. For example

 LD D,(IX) ;is identical to LD D,(IX+0)

and is perfectly legal.

TYPE

 The TYPE operator needs some explanation. It is a unary
operator that returns the type of its operand expression. The
type is defined as follows:

 If the expression contains a forward reference, or is
complicated enough to be sent to the linker to be resolved at
link time, TYPE returns a ZERO. If the expression contains an
external symbol plus or minus a constant or relative item, TYPE
returns an 80H. Otherwise, the expression is defined locally,
and TYPE returns a 20H plus one of the following:

 0 if absolute
 1 if CSEG relative
 2 if DSEG relative
 3 if relative to a common block

 This is used mainly in handling macro parameters.

NUMBERS

Numbers are by default radix 10. The default radix may be
overridden by using one of the following forms:

 nB Binary
 nO Octal
 nQ Octal
 nD Decimal
 nH Hexadecimal
 X'n' Hexadecimal

where n is any number of digits valid for the given radix. Note
that the nB and nD forms will not be recognized if the default
radix has been changed to larger than 11 or 13 respectively since
the trailing character would be a valid digit in the default
radix. Also, the first digit in the nH-type must be from 0-9.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 2-5

Z80 Relocating Macro Assembler Strings

SPECIAL SYMBOLS

 A $ is recognized as a special symbol representing the load
counter at the beginning of the current statement or
substatement. For instance, to loop forever:

 JR $

is the same as

 HERE: JR HERE

since $ is the load counter at the beginning of the instruction.

STRINGS

Strings are sequences of characters delimited by either single or
double quote pairs. For example,

 'This is a string'
 "This is also a string"
 'This is not a legal string"

Strings may contain quotation marks, and are defined in several
possible ways. A single quote may be contained in a string
delimited by double quotes, and vise versa, by just using it:

 'This is an "easy" example'
 "It isn't nice to fool mother nature"

Of course, you can use a single quote in a single quote string by
just using it twice, and the same holds for double quote strings.

 "This is an ""easy"" example"
 'It isn''t nice to fool mother nature'

Page 2-6 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Relocatability

RELOCATABILITY

Many applications require the generation of relocatable code.
This section describes the legal operations available on
relocatable items.

What is a relocatable item? It is any item that is not defined
at assembly time, but will be defined at link time. These items
may be program relative, data relative, common relative,
external, or any mathematical combination of the above items with
other relocatable items or absolute items.

A special relocatable type is a relative type. A relative type
is a program, data, or common relative item. Certain
combinations of relatives generate absolute results, mainly a
relative item minus another relative of the same type. For
instance, a program relative item minus a program relative item
yields an absolute result. Any other combination of relatives
yields a "relocatable" item.

Absolutes may be added to or subtracted from relatives, yielding
another relative.

Certain pseudo-ops require absolute values, such as "if"
statements. Expressions that yield relative or relocatable
results are illegal there and also in DEFS, etc.

Certain pseudo-ops can accept relative parameters. These are
EQU, DEFL, .PHASE, and ORG.

Most other places where expressions are involved, any relocatable
expression is allowed.

Suppose you wanted to load HL with a number equal to the distance
from a data segment location to a program segment item. With
most relocatable assemblers, this cannot be done directly. It
must be calculated at run time like this:

 LD HL,DATAITEM
 LD DE,PROGITEM
 OR A
 SBC HL,DE

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 2-7

Z80 Relocating Macro Assembler Relocatability

Z80ASM allows you to do directly what you originally wanted:

 LD HL,DATAITEM-PROGITEM

Obviously that can't be resolved at assembly time, so the
expression is passed in reverse polish form to SLRNK for
resolution at link time.

Certain combinations are not allowed in standard Microsoft format
output; SLRNK Appendix B lists the operations that are legal and
those SLR Systems has added. All combinations are allowed for
use between Z80ASM and SLRNK, but certain operators are
"extensions".

For example, you can generate a byte as a result of one or more
relocatables like this:

 LD E,DATAITEM*EXTERNAL1+EXTERNAL2

SLRNK will give an error message if the result is out of range
for a byte quantity.

It might even be nice to have a library routine that turns on a
green light by setting the correct bit of a memory location, with
the bit # depending on the application. You could then say

 SET GREEN-1,(HL) ;TURN ON GREEN LIGHT

where GREEN is an external. SLR Format and modified M-REL can
both handle that case.

Page 2-8 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Pseudo-ops

PSEUDO-OPERATIONS

Z80ASM makes many pseudo-ops available to the assembly language
programmer. They will be described in this section.

The pseudo-ops available are divided into 6 categories for this
discussion. The categories are

 1. Program Counter Maintenance

 2. Data Definition and Generation

 3. Conditional Assembly

 4. Macro Facility

 5. Listing Control

 6. Miscellaneous Pseudo-ops

Here comes the first category!

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 3-0

Z80 Relocating Macro Assembler PC Maintenance

1. PROGRAM COUNTER MAINTENANCE

This category includes pseudo-ops that control the program
counter and the loading address of the generated code.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 3-1

Z80 Relocating Macro Assembler PC Maintenance

ABS
ASEG

 Absolute Segment. In a relative-mode assembly, this opcode
causes Z80ASM to generate code for execution at a particular
address, in this case, the address after the last absolute byte
generated. If this is the first ASEG, then the address is 100H.
This is very similar to absolute MODE except that code generated
still has access to other relocatable items, such as externals.
The generated code still needs to be linked before execution.
This pseudo-op takes no parameters. This pseudo-op is ignored in
absolute mode.

ORG <EXP>

 Origin Program Location. This pseudo-op is used to specify
a loading address <EXP> for the code that follows. The logical
program counter is also set to <EXP>. The expression must yield
an absolute or relative result defined on pass 1. ORG forces the
mode of the expression. For example, if the expression yields a
data-relative result, ORG forces an implied DSEG first. If the
expression is absolute mode, ORG forces an implied ABS pseudo-op
first:

 ORG 100H

will cause code to be generated starting at address 100H. This
is the default condition in absolute mode.

If no parameter is given, ORG returns the PC back to the value
just preceding the last ORG.

Page 3-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler PC Maintenance

CSEG
PROG
REL

 Select Code or Program Loading Counter. This pseudo-op
selects the code segment loading address and logical program
counter. This is the default address space in relative mode.
The address selected is that of the last code segment address
used, which starts at 0. This pseudo-op is used to return to the
code segment after having switched to another address space. For
example,

 0000' 21 0000" LD HL,MESG ;Load Pointer to Mes
 0003' CD 0000# CALL OUTPUT ;Output Mes
 DATA ;Put Mes in Data Spc
 0000" 48 69 20 MESG DB 'Hi There'; Generate Mesg
 PROG ;Return to CSEG
 0006' C9 RET ;End of Subroutine.

The data string actually will be located elsewhere at link time,
and the RET instruction will be just after the CALL OUTPUT. The
Program segment is usually used for program or machine code.
This pseudo-op takes no parameters, and is illegal in absolute
mode.

DATA
DSEG

 Select Data Segment Loading Counter. This pseudo-op is
normally used for generating data to be loaded at another area in
the target machine. It is also useful for defining address space
in RAM away from the code area in PROM. The loading counter and
logical PC selected is the one from the last used DATA area. For
example, if this code followed the code above, look what would be
generated.
 DSEG ;define addresses in
 0008" LBL1 DS 1 ;RAM storage
 0009" LBL2 DS 10 ;more RAM storage

The actual load location for this address space is selected at
link time with the /D or /A option. The DSEG address space is
usually used for data storage. This pseudo-op takes no
parameters, and is illegal in absolute mode.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 3-3

Z80 Relocating Macro Assembler PC Maintenance

COM /COMNAME/
COMMON /COMNAME/

 Common Block. This pseudo-op selects the named common block
for the new code type. The block name, like other symbols, is
significant to the first 16 characters internally, to 16
externally in SLR Format, 7 in M-REL format.

Unlike PROG and DATA address spaces, common areas are not
different in each module. For example, the first byte in the
PROG area for module 1 will be at a different physical address
than the first byte in the PROG area for module 2. With Common
blocks, the address spaces are the same to each module, which
allows access to the same data space from different modules.

The actual physical address of the common blocks is selected at
link time with the /C or /A option.

This pseudo-op is illegal in absolute mode.

.PHASE <EXP>

 Select Logical PC. This pseudo-op selects a new logical
program counter, without changing the load counter. It is useful
for generating code at the current location for later transfer
and execution at location <EXP>. This pseudo-op is valid in any
mode, and <EXP> can evaluate to an absolute or relative value.
Once inside a .PHASE block, all PC maintenance pseudo-ops are
illegal until the next .DEPHASE pseudo-op is encountered, which
brings us to another point.

.DEPHASE

 End of Logical Phase Block. This pseudo-op terminates the
current .PHASE block. For example,

 ORG 100H
 0100 21 010E LD HL,RETT ;Return Instr Physical
 0103 11 2000 LD DE,DESTIN ;Return Instr Destination
 0106 01 0001 LD BC,l ;Return Instr Length
 0109 ED B0 LDIR ;Move it
 010B 21 2000 JP DESTIN ;Jump to It
 RETT .PHASE 2000H ;Actual Execution addr
 2000 C9 DESTIN RET ;Generated at 010E with
 .DEPHASE ;Logical address of 2000H

Phase blocks may not be nested.

Page 3-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Data Definition

2. DATA DEFINITION AND GENERATION

This sections contains the pseudo-ops that are involved in
defining and generating all types of data.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 4-1

Z80 Relocating Macro Assembler Data Definition

DB [EXP1][,EXP2]
DEFB [EXP1][,EXP2]
DEFM [EXP1][,EXP2]

 Define Byte. This pseudo-op allows the generation of bytes
of data. Data can be a single expression or string, or several
separated by commas. In relocatable mode, the expressions may be
absolute, relative, or relocatable. Note that a null item will
generate no output, nor is it a syntax error. This is to
accomodate missing parameters in macro expansions. For example,

 0100 00 01 02 03 NUMS DEFB 0,1,2,,,3

and

 0104 40 ?? 02 48 DB 40H,LOW EXTERN1,'B'&1FH,'Hi'

are legal statements.

DW [EXP1][,EXP2]
DEFW [EXP1][,EXP2]

 Define Word. This pseudo-op is used to generate 16-bit
quantities, low byte first. Data can be a single expression or
string, or several separated by commas. In relocatable mode, the
expressions may be absolute, relative, or relocatable. Note that
a null item will generate no output, nor is it a syntax error.
This is to accomodate missing parameters in macro expansions.
For example, the following are legal statements:

 0100 0100 ???? START DEFW START,EXTERNAL SHR 4
 0104 69 48 54 20 DW 'Hi There'

Page 4-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Data Definition

DS <EXP1>[,<EXP2>]
DEFS <EXP1>[,<EXP2 >]

 Define Space. This pseudo-op is used to allocate address
space for variable storage or whatever. The address counter is
incremented by <EXP1>, which must evaluate to an absolute value
on the first pass. No code or data is generated to fill the
address space skipped unless the optional <EXP2> is specified.
<EXT2> is used to fill the declared space with a byte value.
Note that <EXT2> does not need to be defined at assembly time.
Note also that during COM file generation, if <EXP2> is missing,
the space is filled with zeros. For example,

 BUFA DEFS 200H ;Room for 512 byte buffer

declares a buffer BUFA with a size of 512 bytes. In HEX or REL
mode, the initial contents of this buffer are not defined. On
the other hand,

 BUFA: DS 200H,EMPTY ;Room for 512 byte buffer

declares the same buffer, but its contents are initialized to
EMPTY, which possibly won't be defined until link time. The
colon after the label is optional unless the label is a reserved
word, or is also used as a macro name.

<LABEL> EQU <EXP>

 Equate Directive. This pseudo-op declares a value <EXP> to
be assigned to a label. <EXP> must evaluate to an absolute or
relative item by the second pass. The label being defined must
not have been previously defined. For example, the following
statements

 FALSE EQU 0 ;false is 0
 TRUE: EQU NOT FALSE ;true is ffff

assign values to symbols TRUE and FALSE. The colon after the
label is optional in all cases.

<LABEL> DEFL <EXP>
<LABEL> ASET <EXP>

 Define Label. This pseudo-op is identical to EQU except
that it can be used to redefine a label that has been previously
defined. For instance, it could be used to update a counter:

 COUNT DEFL COUNT+1 ;increment count

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 4-3

Z80 Relocating Macro Assembler Data Definition

EXT LABEL1[,LABEL2]
EXTRN LABEL1[,LABEL2]
EXTERNAL LABEL1[,LABEL2]
BYTE EXT LABEL1[,LABEL2]
BYTE EXTRN LABEL1[,LABEL2]
BYTE EXTERNAL LABEL1[,LABEL2]

 External Declaration. This pseudo-op tells the assembler
that the symbols in this list are not defined in this module, but
are defined in another module, to be resolved at link time.
Valid only in relocatable mode, this pseudo-op is necessary only
if you don't use the /U option in your command line.

 Symbols may also be declared external by following them by
two pound-signs (##) when they are referenced. For example,

 LD BC,EXTERNAL##

declares EXTERNAL to be an external.

ENT <LABELIST>
ENTRY <LABELIST>
GLOBAL <LABELIST>
PUBLIC <LABELIST>

 Entry Point Declaration. This pseudo-op tells the assembler
to make this list of symbols and their values available to the
linker so that they may be referenced as EXTernals from other
modules. This is not allowed in absolute mode.

 PUBLIC LABEL1,LABEL2,LABEL3

 Entry points may also be defined by following the symbol by
two colons (::) when the symbol is defined.

 LABEL1:: LD A,3
 LABEL2:: EQU $

declares LABEL1 and LABEL2 as globals.

 Symbols declared public must be defined on the first pass
when generating SLR Format output.

Page 4-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Data Definition

.ACCEPT [STRING,]<SYMBOL>

 The .ACCEPT pseudo-op is used to request a value for a
symbol from the console. <SYMBOL> is a valid symbol name not
elsewhere defined in the file. Z80ASM will print the optional
STRING on the console, or if no STRING is given then the <SYMBOL>
name, followed by a '?', and wait for the value. The value must
be a valid expression, defined on the first pass (you can use
symbols already defined). For example,

 .accept DEBUG_FLAG

will cause Z80ASM to print

DEBUG_FLAG ?

on the console. At this point you type a valid expression. If
TRUE has already been defined, you could type

DEBUG_FLAG ? NOT TRUE

to set DEBUG_FLAG to false.

 Since console buffer read is used, you can supply your input
through a submit file.

 Only one <SYMBOL> can be used per .ACCEPT statement.

DEFC EXP1[,EXP2]
DC EXP1[,EXP2]

 The DEFC pseudo-op is used to generate strings that
terminate with the high bit (bit 7) set. The <EXP>'s may be
strings or valid byte data:

 DEFC "This terminates at the LF',0dh,0ah

In this case the 0ah is converted to an 8ah.

DEFZ EXP1[,EXP2]

 The DEFZ pseudo-op is also used in generating data strings,
but this one terminates with an extra zero byte.

 DEFZ 'hi'

generates 68H,69H,00H.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 4-5

Z80 Relocating Macro Assembler Conditional Assembly

3. CONDITIONAL ASSEMBLY

This section describes the facility whereby sections of code may
be selected for assembly based on certain conditions.

One very useful way to utilize conditional assembly is in program
debugging. For instance, you can insert code to print out inter-
mediate values of variables, or messages to say where the program
is, etc. By putting all that code in conditional assembly
blocks, you would not have to delete the code after debugging, or
re-insert it when something else crops up. You could just define
a symbol DEBUG at the top of the module that defines whether or
not the debug code is included in the assembled code. The
following pseudo-ops allow conditional assembly.

NOTE: For any of the IF-type pseudo-ops that take an expression
as a parameter, CONFIG can be used to select whether to look at
just bit 0 (for DRI compatibility) or the whole 16-bit value.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 5-1

Z80 Relocating Macro Assembler Conditional Assembly

IF <EXP>
COND <EXP>
IFT <EXP>

 Conditional Assembly. This pseudo-op allows conditional
assembly of a section of code. For instance, if you have code
that you want assembled only during program debugging, you could
use the statement

 IF DEBUG

to tell Z80ASM whether the following code should be assembled.
If the expression <EXP> evaluates to an absolute zero, then the
subsequent code up to the next active ELSE or ENDIF is not
assembled. A non-zero value yields a true IF condition, causing
the subsequent lines to be assembled. Since IF blocks may be
nested, active means on the same nest level.

The expression must yield a defined absolute result on the first
pass.

Conditional blocks may be nested as deeply as you need
(theoretically to 65535 levels...).

IFE <EXP>
IFF <EXP>

 This pseudo-op has the opposite effect of the IF pseudo-op.
If the given expression evaluates to 0, a true IF condition is
generated.

ENDIF
ENDC

 Endif directive. This pseudo-op declares the end of the
last conditional block declared.

Page 5-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Conditional Assembly

ELSE

 Else directive. This pseudo-op toggles the current IF
condition. If the current IF condition is false, now it is true,
and vise versa. For example,

 PRNTOUT ;call printer output routine
 IF PARPNT ;if parallel printer
 CALL PAROUT ;call parallel output
 ELSE ;otherwise
 CALL SEROUT ;call serial output
 ENDIF ;terminate if block

if PARPNT is true, the first call will be assembled, otherwise
the second one will be used.

IF0

 This pseudo-op is a special form of the IF pseudo-op. It
takes no parameters, but assembles the following lines of code
only in one-pass mode assemblies.

IF1
 This is similar to the IF0 pseudo-op, except that it returns
a true conditional only on pass 1 of 2-pass mode.

IF2

 This is similar to the IF1 pseudo-op, except that it returns
a true conditional only on pass 2 of 2-pass mode.

IFDEF <SYMBOL>

 The IFDEF pseudo-op takes a valid symbol as an operand, and
assembles the following lines of code only if the symbol has been
defined in the module as absolute, relative or external.

IFNDEF <SYMBOL>

 The IFNDEF pseudo-op performs the opposite function as
IFDEF. The conditional block is assembled only if the given
symbol is undefined.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 5-3

Z80 Relocating Macro Assembler Conditional Assembly

IFIDN <PARAM1>,<PARAM2>

 The IFIDN pseudo-op assembles the conditional block only if
the character strings (not necessarily valid STRINGS) passed as
PARAM1 and PARAM2 are identical. This is useful in testing macro
parameters. Note that the angle bracket delimiters are required.

IFDIF <PARAM1>,<PARAM2>

 The IFDIF pseudo-op performs the opposite function of IFIDN,
the parameters must be different to assemble the conditional
block. Note that the angle bracket delimiters are required.

IFB <PARAM>

 IF BLANK. If the parameter passed is blank, a true IF is
generated. This can be used to test for the existence of macro
parameters. The CONFIG program can be used to select whether or
not a space is treated as a blank parameter (ignore leading
spaces). Note that the angle bracket delimiters are required.

IFNB <PARAM >

 Opposite of IFB. IF NOT BLANK. Note that the angle bracket
delimiters are required.

Page 5-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Macro Facility

4. MACRO FACILITY

Macro facilities provide the ability to reproduce sequences of
instructions repetitively and simply. Z80ASM supports the Intel
standard macro facility, which includes several different types
of macros.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 6-1

Z80 Relocating Macro Assembler Macro Facility

The simplest form of macros are the inline macro types, REPT,
IRP, and IRPC. These all store source lines for immediate
repetition after which the lines are discarded.

[LABEL] REPT <EXP>

 Repeat Macro. The repeat macro reads a group of statements
up to the next matching ENDM or MEND pseudo-op. That is the BODY
of the macro. The group of statements are then scanned and
assembled <EXP> times. <EXP> must be defined and absolute on the
first pass.

The body of the REPT macro may contain other proper macro
definitions including other REPT macros. The body can also
contain nested conditional pseudo-ops. Any active conditionals
are automatically terminated at the end of each repetition of the
macro, so that IF and ELSE directives are not required to have
their matching ENDIF statements if they begin within the macro
body.

In the following example we use the REPT macro to build a table
of bytes from 20 to 0.

 0014 1 ??VAR DEFL 20 ;set initial value
 2 REPT 21 ;repeat 21 times
 3 DEFB ??VAR ;generate the byte
 4 ??VAR DEFL ??VAR-1 ;decrement the var
 5 ENDM ;end of macro body
0100 14 A 1 DEFB ??VAR ;generate the byte
0101 13 A 1 DEFB ??VAR ;generate the byte
0102 12 A 1 DEFB ??VAR ;generate the byte
0103 11 A 1 DEFB ??VAR ;generate the byte
0104 10 A 1 DEFB ??VAR ;generate the byte
0105 0F A 1 DEFB ??VAR ;generate the byte
0106 0E A 1 DEFB ??VAR ;generate the byte
0107 0D A 1 DEFB ??VAR ;generate the byte
0108 0C A 1 DEFB ??VAR ;generate the byte
0109 0B A 1 DEFB ??VAR ;generate the byte
010A 0A A 1 DEFB ??VAR ;generate the byte
010B 09 A 1 DEFB ??VAR ;generate the byte
010C 08 A 1 DEFB ??VAR ;generate the byte
010D 07 A 1 DEFB ??VAR ;generate the byte
010E 06 A 1 DEFB ??VAR ;generate the byte
010F 05 A 1 DEFB ??VAR ;generate the byte
0110 04 A 1 DEFB ??VAR ;generate the byte
0111 03 A 1 DEFB ??VAR ;generate the byte
0112 02 A 1 DEFB ??VAR ;generate the byte
0113 01 A 1 DEFB ??VAR ;generate the byte
0114 00 A I DEFB ??VAR ;generate the byte

Page 6-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Macro Facility

[LABEL] IRPC <DUMMY>,<CHARLIST>

 Indefinite Repeat Character. The IRPC macro reads the body
of the macro, just like the REPT macro. The body of the macro is
then scanned and assembled once for each character in the given
CHARLIST. However, any occurrence of the item DUMMY in the body
is replaced by the current character in CHARLIST. Well, almost
any occurrence. See the section on dummy parameter evaluation.

As with the REPT macro, this can contain nested macros and
conditionals.

In the next example, we use an IRPC macro to generate a string of
characters, each with the high bit set to 1. Note that the DUMMY
parameter XX is replaced by a single character for each iteration
of the macro. Note also that an ampersand must be used in front
of or after the DUMMY in order for it to be replaced within a
quoted string.

Note also that comments started with two semi-colons are not
stored with the macro, and therefore 1.) don't take up memory
space, and 2.) don't appear in the expansion.

 1 IRPC XX,MESSAGE1 ;set hi bit of each
 2 DB '&XX'+80H ;;this comment gone
 3 ENDM
0100 CD A 1 DB 'M'+80H
0101 C5 A 1 DB 'E'+80H
0102 D3 A 1 DB 'S'+80H
0103 D3 A 1 DB 'S'+80H
0104 C1 A 1 DB 'A'+80H
0105 C7 A 1 DB 'G'+80H
0106 C5 A 1 DB 'E'+80H
0107 B1 A 1 DB '1'+80H

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 6-3

Z80 Relocating Macro Assembler Macro Facility

[LABEL] IRP < DUMMY >,<<PARAMLIST>>

 Indefinite Repeat. The IRP is very similar to the IRPC,
except that the parameters are multi-character items. Note that
the brackets around the PARAMLIST are required.

In the following example, we generate four error messages with
labels. Note that the label is constructed by "concatenating"
the letter M to the parameter. The ampersand (&) is used to do
that.

 1 mtlist
 2 IRP XX,<MACRO,.PHASE,IF,.DEPHASE>
 3 XX&M: DEFB 'missing &XX',0DH,0Ah
 4 ENDM
0100 6D 69 73 73A 1 MACROM: DEFB 'missing MACRO',0DH,0Ah
0104 69 6E 67 20A 1
0108 4D 41 43 52A 1
010C 4F 0D 0A A 1
010F 6D 69 73 73A 1 .PHASEM: DEFB 'missing .PHASE',0DH,0Ah
0113 69 6E 67 20A 1
0117 2E 50 48 41A 1
011B 53 45 0D 0AA 1
011F 6D 69 73 73A 1 IFM: DEFB 'missing IF',0DH,0Ah
0123 69 6E 67 20A 1
0127 49 46 0D 0AA 1
012B 6D 69 73 73A 1 .DEPHASEM: DEFB 'missing .DEPHASE',0DH,0Ah
012F 69 6E 67 20A 1
0133 2E 44 45 50A 1
0137 48 41 53 45A 1
013B 0D 0A A 1
 5

Page 6-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Macro Facility

<LABEL> MACRO [<DUMMYLIST>]

 Macro Definition. This is the most sophisticated form of
macro item. This statement declares the beginning of a MACRO
definition. The <LABEL> must be present; it is the name by which
the macro will be referred to later. It follows the same rules
as labels. A colon after the label is optional.

The <DUMMYLIST> is optional. If present, it declares <dummy>
items which will be replaced by other items when the macro is
called. Multiple <dummy> items are separated by commas. <Dummy>
items follow the same rules as labels.

All source lines following the macro header are stored in memory
under the name <LABEL>, up to the next matching ENDM or MEND.
Since macros may contain macro definitions (nested macro
definitions), matching means the ENDM at the same nest level.

To call the macro, just use the macro name as you would any other
opcode or pseudo-op, passing with it any desired parameters.

Suppose you are writing a program for CP/M systems in which you
do a lot of displaying messages on the console. It might be nice
to design a macro that would let you easily do that. You could
then call the PRINT macro to print a string on the screen. For
example,

 1 .LALL
 2 PRINT MACRO XX
 3 LD DE,STRING
 4 LD C,9
 5 CALL 5
 6 JP STEND
 7 STRING DEFB XX,0DH,0AH,'$'
 8 STEND
 9 ENDM
 10 PRINT 'This is a test'
0100 11 010B A 1 LD DE,STRING
0103 OE 09 A 2 LD C,9
0105 CD 0005 A 3 CALL 5
0108 C3 011C A 4 JP STEND
010B 54 68 69 73A 5 STRING DEFB 'This is a test',0DH,0AH,'$'
011C A 6 STEND
 11

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 6-5

Z80 Relocating Macro Assembler Macro Facility

The line PRINT 'This is a test' generated the next 6 lines of
macro output, to set up the data and system call to output the
string on the console. But there is a problem. If the PRINT
macro had been called again, the labels STRING and STEND would
have been multiply defined, which is illegal (you won't go to
jail, your program just won't assemble).

One way around that would be to pass another parameter to concat
to the labels, to make them unique. Z80ASM provides another way,
which will be discussed next.

LOCAL <LABELIST>

 Local Labels. This pseudo-op declares a label or set of
labels to be local to the current macro expansion, i.e., each
time the macro is expanded or repeated, generate a unique label
for each of these. The labels in <LABELIST> must be legal
labels. The LOCAL statement should occur before the labels are
referenced in the macro.

Z80ASM implements LOCAL labels by generating a unique label for
each LOCAL consisting of two question marks followed by 4 hexa-
decimal digits. For example, the first LOCAL label encountered
in an assembly would be replaced by the label ??0001. Therefore,
you should avoid the use of labels that have that form in order
to lessen the chances of confusion.

LOCAL label replacement is done at expansion time, not at macro
definition time. This implies that parameters passed to a macro
that match a local symbol name will also be replaced by a local
label.

Note that LOCAL labels are valid in all macro types.

Page 6-6 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Macro Facility

 1 .LALL
 2 PRINT MACRO XX
 3 LOCAL STRING,STEND
 4 LD DE,STRING
 5 LD C, 9
 6 CALL 5
 7 JP STEND
 8 STRING DEFB XX,0DH,0AH,'$'
 9 STEND ENDM
 10 PRINT 'This is a test'
 A 1 LOCAL STRING,STEND
0100 11 010B A 2 LD DE,??0001
0103 0E 09 A 3 LD C,9
0105 CD 0005 A 4 CALL 5
0108 C3 011C A 5 JP ??0002
010B 54 68 69 73A 6 ??0001 DEFB 'This is a test',0DH,0AH,'$'
011C A 7 ??0002
 11
 12 PRINT 'This is a STRING test'
 A 1 LOCAL STRING,STEND
011C 11 0127 A 2 LD DE,??0003
011F 0E 09 A 3 LD C,9
0121 CD 0005 A 4 CALL 5
0124 C3 013F A 5 JP ??0004
0127 54 68 69 73A 6 ??0003 DEFB 'This is a ??0003 test',0DH,0AH,'$'
013F A 7 ??0004
 13
 14 END

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 6-7

Z80 Relocating Macro Assembler Macro Facility

EXITM

 Exit macro expansion. This pseudo-op allows an easy way to
terminate a macro expansion. It is usually used in conjunction
with a conditional test.

EXITM is also allowed in an include file or maclib file, to halt
the processing of those files.

Note that EXITM exits only a macro expansion, not a definition.
Use ENDM or MEND to end the macro definition.

INCLUDE <FILENAME.EXT>
$INCLUDE <FILENAME.EXT>

 Include another source file. This pseudo-op takes as an
argument a valid CP/M file name. That disk file is then opened
and inserted at the point. Note that your listing line numbers
start over at 1, and that a letter precedes that number. That is
the nesting level. Any errors generated while processing this
included file will give the Included file name and line number in
that file. Note also that the included file can also contain an
INCLUDE directive. At the end of the included file, assembly
continues at the previous file, next line. This is a very
powerful feature for including common macro definitions, and even
assembling large projects without resorting to relocatable code.

MACLIB <FILENAME.EXT>

 Include Macro Definition File. This pseudo-op is identical
to an INCLUDE, except that it is ignored on the second pass.
This pseudo-op is used to read macro definition files, or any
source files that produce no output code. This is to save time
on 2-pass assemblies since the whole MACLIB file will be skipped
on the second pass.

Page 6-8 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Parameter Evaluation Rules

Dummy Parameter Evaluation

While reading the body of a macro, Z80ASM looks for the
occurrence of any of the optional dummy parameters in the text.
There are several rules that are followed.

1. Dummy parameters are not replaced in a comment field.

2. A dummy parameter delimited by spaces, tabs, commas, etc., and
not inside a quoted string, is automatically flagged for
replacement at expansion time.

3. Any dummy parameter preceded or followed by an ampersand (&),
whether or not it is contained in a quoted string, is flagged for
replacement, and the leading and/or trailing ampersand is
removed. This is useful for dummy replacement in strings, and
also for concatenating a parameter to something else.

4. Any dummy parameter preceded by an up-arrow (^) is ignored.
The up-arrow is used to cause a character to be taken literally,
i.e., an up-arrow can be represented as two up-arrows in
succession.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 6-9

Z80 Relocating Macro Assembler Parameter Evaluation Rules

Parameter Evaluation Rules

There are a number of special options available to the programmer
when it comes to parameter passing. Here we will describe the
rules that Z80ASM follows when evaluating parameters.

First, all leading blanks are skipped. In other words, the
parameter starts at the first non-blank character. That first
non-blank character determines what type of parameter is being
evaluated.

If the first character is a quotation mark (single or double),
then the parameter is processed as a STRING, following the rules
for strings. The leading and trailing quotation marks are passed
as part of the parameter.

If the first character is a '<' (less-than sign, refered to in
this discussion as a left bracket), then the '<' is removed, and
the text is processed up to the next matching '>'. By matching
we mean that the brackets are nestable, so that if there are
three left brackets, the parameter is processed up to the third
right bracket exclusive. Strings encountered in the bracketed
parameter are treated as such, and follow the rules for strings.
Brackets contained in a string are not counted as part of the
nesting level.

If the first character is a percent sign (%), then the expression
evaluator is called to process the following valid expression.
The expression must resolve to a defined absolute value. This
value (16-bit unsigned) is then converted to a number in the
current radix, which is then used as the parameter.

Otherwise, the item is treated as a regular old parameter.

Note that a special character in macros is the up-arrow. It
causes characters to be taken literally. For instance, to pass
an up-arrow (^) as a parameter, use two in succession. To pass a
semicolon as a parameter, use ^;, which is equivalent to <;>.
Try using the following parameter:

<This is a ^> and this is an ^^>

and see what you get.

Page 6-10 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Parameter Evaluation Rules

One condition that occurs very often is a macro call with a
missing or null parameter. This can be discovered at expansion
time by using the special operator NUL. NUL returns a true value
(-1) if what comes after it is nothing but tabs, spaces, comment
field, or an end of line. Anything else will return a false
value to NUL.

Look at the following example.

 1
 0055 2 XX EQU 55H
 3
 4 MAC1 MACRO ?XX,?YY
 5 DEFB ?YY ;SECOND
 6 IF NUL ?XX
 7 EXITM
 8 ELSE
 9 IRPC XX,?XX
 10 LOCAL LABEL
 11 LABEL DW LABEL
 12 DEFB ^^XX
 13 DEFB '&XX'&1FH
 14 ENDM
 15 ENDM
 16
 17 MAC1 CONTROL,'DATA'
0100 44 41 54 41A 1 DEFB 'DATA' ;SECOND
0104 0104 B 2 ??0001 DW ??0001
0106 55 B 3 DEFB XX
0107 03 B 4 DEFB 'C'&1FH
0108 0108 B 2 ??0002 DW ??0002
010A 55 B 3 DEFB XX
010B 0F B 4 DEFB 'O'&1FH
010C 010C B 2 ??0003 DW ??0003
010E 55 B 3 DEFB XX
010F 0E B 4 DEFB 'N'&1FH
0110 0110 B 2 ??0004 DW ??0004
0112 55 B 3 DEFB XX
0113 14 B 4 DEFB 'T'&1FH
0114 0114 B 2 ??0005 DW ??0005
0116 55 B 3 DEFB XX
0117 12 B 4 DEFB 'R'&1FH
0118 0118 B 2 ??0006 DW ??0006
011A 55 B 3 DEFB XX
011B 0F B 4 DEFB 'O'&1FH
011C 011C B 2 ??0007 DW ??0007
011E 55 B 3 DEFB XX
011F 0C B 4 DEFB "L'&1FH
 18 ;
 19 MAC1 ,XX
0120 55 A 1 DEFB XX ;SECOND
 20
 21 END

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 6-11

Z80 Relocating Macro Assembler Listing Controls

5. Listing Controls

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 7-1

Z80 Relocating Macro Assembler Listing Controls

TITLE <ANYTHING>

 Listing Title. This defines a new title to be put at the
top of subsequent pages of listing. Takes effect BEFORE this
line is printed, so this can be used in the first line of your
source file to put a title on the first page. The title may be
up to 80 characters, and may be truncated by Z80ASM to fit on the
page.

Note that any tabs are compressed to single spaces. CONFIG can
enable or disable the listing of the source line containing the
TITLE directive.

<ANYTHING> can be in one of two forms. If the first non-blank
character is a left paren, then the token is assumed to be in the
following form:

 (STRING)

where STRING is a valid delimited string, like 'Hi there y''all'.
The delimiting quotes do not become part of the stored string.

If the first non-blank character is not a left paren, then the
stored string begins with the first non-blank up to the first
semicolon or CR. For example

 TITLE This is my 'Title'
and
 TITLE ('This is my ''Title''')

are equivalent.

SUBTTL <ANYTHING>
$TITLE <ANYTHING>

 Listing Subtitle. This defines the subtitle to be used on
subsequent listing pages. The subtitle can be up to 60
characters long. See TITLE for a definition of <ANYTHING>.

 The default subtitle is the filename of the file being
assembled. The subtitle is reset upon entry and exit to/from any
INCLUDE file to the name of the current source file.

Page 7-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Listing Controls

PAGE [PLENGTH][,PWIDTH]
EJECT [PLENGTH][,PWIDTH]
$EJECT [PLENGTH][,PWIDTH]
*EJECT [PLENGTH][,PWIDTH]

 Top of Page. If no parameters are given, this pseudo-op
causes a new page to be started in the listing. Otherwise, one
or two parameters are expected, the first being the new page
length in lines, and the second being the new page width in
columns. The standard default page length and width are set with
CONFIG. Note that spaces are allowed between the * and EJECT.

 PAGE 80, 132 ;page = 80 lines by 132 columns

LIST
.LIST

 Listing On. This is the default mode. This has effect only
if a listing is being generated. This affects overall listing.
NLIST

.XLIST

 No List. This pseudo-op stops all listing generation. This
can be countered only by a subsequent LIST pseudo-op.

MTLIST

 Multi-line List. This pseudo-op enables listing of extra
lines generated when the given source line generates more than 4
bytes of output. The default case is to just list the first 4
bytes with the source line. For instance, the line

 DEFB 'I Like Peanut Butter'

generates 20 bytes of code. The default case will just list the
first four bytes, while MTLIST will cause 5 lines to be printed.

NMTLIST

 No Multi-line List. This pseudo-op suppresses the listing
of extra lines of output caused by more than 4 bytes being gener-
ated from one source line. This is the standard default case.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 7-3

Z80 Relocating Macro Assembler Listing Controls

CLIST
.LFCOND

 Conditional List. This pseudo-op enables listing of lines
contained in FALSE conditional assembly blocks. Standard default
is to list only the lines that are in TRUE conditional blocks.
NCLIST

.SFCOND

 No Conditional Listing. This pseudo-op causes the
suppression of listing output during FALSE conditional block
processing. This is the standard default case.

.TFCOND

 Toggle Conditional List. This pseudo-op causes the listing
of conditional blocks to be turned OFF if it was ON, and ON if it
was OFF.

.LALL

 List All. This pseudo-op controls macro expansion listing
only. It causes Z80ASM to list every line of macro expansion
(does not override NLIST or .XLIST).

.SALL

 Suppress All. This pseudo-op controls macro expansion
listing only. It causes the suppression of all macro expansion
listing.

.XALL

 Partial List. This pseudo-op controls macro expansion
listing only. .XALL causes Z80ASM to list only the lines that
generate code output.

Page 7-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Miscellaneous Pseudo-ops

6. Miscellaneous Pseudo-ops

The ones that don't fit in anywhere else.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 8-1

Z80 Relocating Macro Assembler Miscellaneous Pseudo-ops

END [STARTADR]

 End directive. This signifies end of input file to the
assembler. The optional argument is used, in HEX and relocatable
mode, to signify a starting address for the program. Note: this
directive is ignored if encountered during a macro definition or
within a FALSE conditional block.

END START ;start at start...

NAME <ANYTHING>

 Module name. Valid only in relocatable code, this assigns a
name to the generated relocatable module. If no name is defined,
Z80ASM uses the source file name as the module name. See TITLE
for a description of <ANYTHING>. Maximum size 16 chars. Syntax:

 NAME MYFILE
 NAME ('MYFILE')

.REQUEST <LIBLIST>

 Request Library Search. This pseudo-op causes SLRNK to
search the given filename.REL for any undefined externals. The
modules are loaded as needed. The given filename.REL is assumed
to reside on the default disk at link time. Note that the
filename may be eight characters long in M-REL format, but only
six characters if you included a drive specifier. SLR Format
allows eight in either case (actually 16, but CP/M filenames are
limited to eight). Requests may pass more than one filename,
separated by commas. They will be searched in the order in which
they are defined. For example:

 REQUEST C:MYLIB,FORLIB

.Z80

 This pseudo-op has no effect.

.CREF

 Cross-reference ON. This pseudo-op turns on the cross-
reference builder for the subsequent source lines. This is the
default condition. This pseudo-op is useful only when cross-
reference generation has been selected by a command line option
or through CONFIG.

Page 8-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Miscellaneous Pseudo-ops

.XCREF

 Cross-reference OFF. This pseudo-op turns off the cross-
reference builder for the subsequent lines of source up to the
next .CREF. Useful only when cross-reference generation is in
use, ignored otherwise.

.COMMENT <delim>

 Comment text. This pseudo-op is used to turn text into a
comment. The next non-blank character defines the <delim>iter.
The rest of the source file up to line containing the next
<delim> character is considered a comment field. This is useful
for commenting out a chunk of code without putting a semicolon at
the beginning of each line.

.PRINTX

 Print text. This pseudo-op takes the rest of the source
line and places it on the console. It is useful in displaying
messages, values of parameters (by passing the parameter using a
leading % to a macro containing .printx), etc.

.RADIX <EXP>

 Set input and output radix. This pseudo-op is used to
change the default input and output radix from base 10 to
something else in the range of 2-16. The default radix is set to
10 before the <EXP> is processed. This is usually used to enter
a group of data in a base such as 16 without requiring the
trailing H. It also affects the base used in processing macro
parameters preceded by a %.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page 8-3

Z80 Relocating Macro Assembler Error Message Summary

 APPENDIX A - ERROR MESSAGE SUMMARY

There are many error conditions that Z80ASM can detect. This
section describes the error messages that can be generated.

Error messages are of the form:

FILENAME - ERROR MESSAGE Line # ?????
<This Line Is The Source Line That Contains The Error Condition>

where FILENAME is the name of the current file or macro being
processed, and ????? is the line number of that file or macro on
which the error was discovered.

Note: errors discovered while processing the intermediate code
give code address instead of line number for the error.

Bad Dummy Param

 Dummy parameters must follow the syntax for valid
 labels.

Bad File Name

 Something is syntactically incorrect with the given
 file name.

Bad Opcode

 Something was found in the opcode field that is not in
 the opcode list, pseudo-op list, or macro table.

Byte Out of Range

 This can occur in several places, with meaning
 depending on the instruction involved. For relative
 jumps and indexed addressing, the value generated must
 lie within the range of -128 to +127. For BIT, RES,
 and SET instructions, the bit number must be between 0
 and 7. For RST instructions, the operand must be 0, 8,
 10H, 18H, etc. Finally, for the IM instruction, the
 operand must be 0, 1, or 2. Something other than these
 was calculated.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page A-1

Z80 Relocating Macro Assembler Error Message Summary

Comma Expected

 Guess what? You're right, a comma was expected.
 Possibly something extra ahead of your comma, or else
 your comma is missing. Or something.

Expression Error

 This error message will only be generated if the
 expression evaluator gets very confused. Should not
 happen...

Extra Operand

 Look at that line closely, Z80ASM found more items on
 it than belonged. Possibly you just forgot a semicolon
 before your comment, but it may be more critical than
 that.

File Not Found

 Z80ASM tried to open the given file unsuccessfully.

ID, (, or Unary Op Expected

 The expression evaluator was looking for an ID (valid
 number or label), left paren, or Unary Operator (such
 as HIGH or LOW). Something else was there.

Illegal in Absolute File

 A pseudo-op was encountered that is valid only in
 relocatable assembly.

Illegal - 0 used

 The expression could not be evaluated down to the type
 required by the pseudo-op on this line. A zero was
 used instead.

Intermediate Corrupt

 An item was found while processing the intermediate
 code that should not be there. Try to determine what
 led up to that and report the bug.

Page A-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Error Message Summary

Line Too Long

 Source lines are limited to 127 characters in length.

Macro Redef

 Macro Table is confused about a macro redefinition.
 Possibly you redefined the macro differently on
 different passes through MACLIB, IF1, IF2 or some other
 conditional situation. Macro redefinition is allowed,
 but obviously must be the same on each pass.

Missing .DEPHASE

 Something was encountered that is illegal inside a
 PHASE block. Possibly you forgot a .DEPHASE pseudo-op.

Missing ENDIF

 Oops! End of file encountered while in a conditional.
 Where was your ENDIF ?

Missing ENDM

 Oops! End of file encountered while building a macro.
 Probably a missing ENDM or MEND.

Missing IF

 An ELSE or ENDIF without IF.

Missing MACRO

 Something was encountered that is not legal outside a
 macro, such as an ENDM, MEND, or LOCAL.

Missing .PHASE

 A .DEPHASE pseudo-op was found without a preceding
 .PHASE pseudo-op. Check your phase blocking.

No Backing Up in COM File

 Only in absolute mode, COM type files. The address
 given in the ORG statement is smaller than the last
 location generated. You cannot go backwards while
 generating a COM file.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page A-3

Z80 Relocating Macro Assembler Error Message Summary

Out Of Memory

 No room left in memory. Symbol table, macro table,
 include tables, cross-reference table, etc, must all
 fit into memory. Ask about Z80ASM+.

Previously Defined

 This LABEL has been defined already elsewhere in the
 file and is being redefined with something other than a
 DEFL. Change the name of one of your labels.

String Syntax

 Strings can contain only printable characters. Either
 your string contains a control character (such as a
 TAB), or you forgot the trailing quotation mark.

Symbol Expected

 Something was found that is illegal as an operation or
 label. Probably something was mis-typed on the line.

Syntax Error

 This message appears when the assembler is too confused
 to know what went wrong.

Too Many Commons

 An attempt was made to define more than 12 common
 blocks. That is the limit. Ask about Z80ASM+.

Unexpected EOF

 The end of the source file was found at an inopportune
 time.

')' Expected

 Somewhat self-explanatory.

Page A-4 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Error Message Summary

'/' Expected

 Somewhat self-explanatory. Common block name must be
 delimited by slashes, and contain only valid label-type
 characters.

), Bin-op, or End of Exp Expected

 Well, the expression evaluator was looking for one of
 the above, a right paren, a binary operator (an
 operator that takes two arguments, such as * or /), or
 an end-of-expression delimiter. Something else was
 there.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page A-5

Z80 Relocating Macro Assembler Zilog Z80 Instruction Set

APPENDIX B - ZILOG Z80 INSTRUCTION SET

The following definitions are used throughout this description of
the ZILOG Z80 Instruction Set.

cc C, NC, Z, NZ, P, M, PE, or PO (V & NV allowed in
 Z80ASM in place of PE and PO)
dd C, NC, Z, or NZ
nn Any 16-bit number or expression
(nn) Represents the contents of address nn
n Any 8-bit number or expression
r Register A, B, C, D, E, H, or L
d A one-byte expression in the range -128 to 127
b Expression in the range 0 through 7
ss Register pairs BC, DE, HL, SP
pp Register pairs BC, DE, IX, SP
qq Register pairs BC, DE, HL, AF
rr Register pairs BC, DE, IY, SP
ir (HL), (IX+d), or (IY+d)
m r, (HL), (IX+d), or (IY+d)
s r, n, (HL), (IX+d), or (IY+d)

ADC HL,ss HL = HL + Carry + ss
ADC A,s Acc = Acc + Carry + s
ADD A,n Acc = Acc + n
ADD A,r Acc = Acc + r
ADD A,(ir) Acc = Acc + (ir)
ADD HL,ss HL = HL + ss
ADD IX, pp IX = IX + pp
ADD IY,rr IY = IY + rr
AND s Acc = Acc AND s
BIT b,m Z = BIT b of m
CALL cc,nn IF cc is true, call subroutine at nn
CALL nn Call subroutine at nn
CCF Complement Carry
CP s Set Flags as result of Acc - s
CPD CP (HL), DEC HL, DEC BC
CPDR CP (HL), DEC HL, DEC BC, Rpt till BC=0 or Acc=(HL)
CPI CP (HL), INC HL, DEC BC
CPIR CP (HL), INC HL, DEC BC, Rpt till BC=0 or Acc=(HL)
CPL Complement Acc - Acc = -(Acc + 1)
DAA Decimal Adjust Acc
DEC m m = m - 1
DEC IX IX = IX - 1
DEC IY IY = IY - 1
DEC ss ss = ss - 1
DI Disable interrupts
DJNZ e B = B - 1, if B<>, Jump to e
EI Enable interrupts
EX (SP),HL Exchange HL with (SP) top of stack
EX (SP),IX Exchange IX with (SP) top of stack

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page B-1

Z80 Relocating Macro Assembler Zilog Z80 Instruction Set

EX (SP),IY Exchange IY with (SP) top of stack
EX AF,AF' Exchange AF with AF'
EX DE,HL Exchange DE with HL
EXX Exchange HL, DE, & BC with HL', DE', & BC'
HALT Halt CPU till interrupt or reset
IM 0 Select Interrupt Mode 0
IM 1 Select Interrupt Mode 1
IM 2 Select Interrupt Mode 2
IN A,(n) Acc = input from port n
IN r,(C) r = input from port (C)
INC m m = m + 1
INC IX IX = IX + 1
INC IY IY = IY + 1
INC ss ss = ss + 1
IND (HL) = input from port (C), DEC HL, DEC B
INDR (HL) = input from port (C), DEC HL, DEC B, rpt till B=0
INI (HL) = input from port (C), INC HL, DEC B
INIR (HL) = input from port (C), INC HL, DEC B, rpt till B=0
JP (HL) PC = HL (Jump to location (HL))
JP (IX) PC = IX
JP (IY) PC = IY
JP cc,nn If cc is true, PC = nn
JP nn PC = nn
JR dd.nn If dd is true, jump relative to nn
JR nn Jump relative to nn
LD A,(BC) Acc = contents of location (BC)
LD A,(DE) Acc = (DE)
LD A,I Acc = I (Interrupt Vector Reg)
LD A,(nn) Acc = location nn
LD A,R Acc = R (Refresh Reg)
LD (BC),A location (BC) = Acc
LD (DE),A location (DE) = Acc
LD (ir),n Store n in location (ir)
LD (ir),r Store r in location (ir)
LD ss,nn ss = nn
LD ss,(nn) ss = contents of nn
LD I,A I = Acc
LD IX,nn IX = nn
LD IX,(nn) IX = contents of nn
LD IY,nn IY = nn
LD IY,(nn) IY = contents of nn
LD (nn),A Store a in location (nn)
LD (nn),ss Store ss in location (nn)
LD (nn),HL Store HL in location (nn)
LD (nn),IX Store IX in location (nn)
LD (nn),IY Store IY in location (nn)
LD R,A Store A in R
LD r,(ir) r = location (ir)
LD r,n r = n
LD r,r r = r
LD SP,HL SP = HL
LD SP,IX SP = IX
LD SP,IY SP = IY
LDD Location (DE) = Location (HL), DEC HL, DE, & BC
LDDR (DE) = (HL), DEC HL, DE, & BC, REPEAT TILL BC=0

Page B-2 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler Zilog Z80 Instruction Set

LDI Location (DE) = Location (HL), INC HL & DE, DEC BC
LDIR (DE) = (HL), INC HL & DE, DEC BC, Repeat till BC=0
NEG Acc = -Acc
NOP Nothing
OR s Acc = Acc OR s
OTDR Port (C) = (HL), DEC HL & B, Repeat till B = 0
OTIR Port (C) = (HL), INC HL, DEC B, Repeat till B=0
OUT (C), r Port (C) = r
OUT (n),A Port n = A
OUTD Port (C) = (HL), DEC HL & B
OUT1 Port (C) = (HL), INC HL, DEC B
POP IX IX = (SP), SP = SP + 2
POP IY IY = (SP), SP = SP + 2
POP qq qq = (SP), SP = SP + 2
PUSH IX SP = SP - 2, (SP) = IX
PUSH IY SP = SP - 2, (SP) = IY
PUSH qq SP = SP - 2, (SP) = qq
RES b,m Reset bit b of m
RET PC = (SP), SP = SP + 2 (Return from sub.)
RET cc If cc is true, PC = (SP), SP = SP + 2
RETI Return from interrupt
RETN Return from non-maskable interrupt
RL m Rotate m left through carry
RLA Rotate Acc left through carry
RLC m Rotate ma left circular
RLCA Rotate Acc left circular
RLD Rotate (HL) & Lower nibble of Acc left 4 bits
RR m Rotate m right through carry
RRA Rotate Acc right through carry
RRC m Rotate m right circular
RRCA Rotate Acc right circular
RRD Rotate (HL) & Lower nibble of Acc right 4 bits
RST p SP = SP - 2, (SP) = PC, PC = p (Single byte call)
SBC A,s Acc = Acc - Carry - s
SBC HL,ss HL = HL - Carry - ss
SCF Set Carry Flag
SET b,m Set bit b of m
SLA m Shift m left arithmetic
SRA m Shift m right arithmetic
SRL m Shift m right logical
SUB s Acc = Acc - s
XOR s Acc = Acc XOR s

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page B-3

Z80 Relocating Macro Assembler INTEL Hex File Format

APPENDIX C - INTEL HEX FILE FORMAT

The HEX file optionally generated by Z80ASM is the standard INTEL
format HEX file. The file consists of one or more records of
ASCII text defined below.

Record Syntax

 :NNAAAATTDDDDDDDDDDDDDDDDDDXX

The first character is a colon (:)
The next two characters (NN) define the record length (00 - FF)

If the length is non-zero:

AAAA Defines the load address of the record. It is forward
reading, i.e., High byte first.

The next two characters are the record type. TT is always zero
for data records, 01 for ending record.

The following NN*2 characters define the actual binary to be
loaded starting at AAAA.

XX is a checksum byte which, when added to the sum of all the
previous bytes in this record, gives a total of zero (mod 256).

If NN = 0, then the value at AAAA is the optional starting or
execution address. A record length zero also signifies end-of-
file.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page C-1

Z80 Relocating Macro Assembler CONFIG Utility

APPENDIX D - CONFIG UTILITY

The configuration utility CONFIG.COM provided with Z80ASM allows
easy customization of Z80ASM to a particular set of requirements.
This section briefly describes its use.

To run CONFIG, type

 A>CONFIG Z80ASM.COM

where Z80ASM.COM is the file name you want to customize.

CONFIG will respond with a series of questions requesting flag
settings or item values. In parentheses is the current value of
that item. You can modify the current value by typing a new one,
or the item can be left the same by just entering a CR. The
process can be aborted by typing a ^C. After the last question
is answered, CONFIG will write out the new settings.

Now we will explain each question that CONFIG asks.

Page Width (80) -

 The current default page width is 80 columns. Any listing
output wider than that will be truncated. This should be set to
the width of the printer you use most often, in columns (255
max). This parameter can be changed at assembly time with the
PAGE pseudo-op.

Page Length (60) -

 The current default page length is 60 lines. A form feed
will be generated after every 60 lines of listing. This should
be modified if your page size is different. This parameter can
be modified at assembly time with the PAGE pseudo-op.

Special Bits

 This allows you to modify the default assembly type, which
is: absolute, COM-type, Lower to upper is enabled, no symbol
table, no cross-reference, no automatic Externals. CONFIG tells
you what the different bits in the byte stand for. You can
toggle any bit by just typing in a number from 0 to 7. To leave
that item the way it is, just type CR.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page D-1

Z80 Relocating Macro Assembler CONFIG Utility

List more than 4 bytes of object code (N) -

 The default setting is to list up to 4 bytes of object code
for each source line. Any more than that (such as in a DB
string) are not printed. A Y in this flag would cause extra
bytes to be printed on successive listing lines, four per line.
This flag has the same effect as the MTLIST & NMTLIST pseudo-ops.

List lines encountered during false conditionals (N) -

 The default setting is to suppress the listing of lines
encountered during a false conditional block. A Y in this flag
will cause false conditional lines to be printed. This flag can
be modified at assembly time by the CLIST and NCLIST pseudo-ops.

Form Feed at start of listing (N) -

 The default setting causes no top-of-form to be issued
before the first line is printed. This assumes that your printer
is already at the top of a new page when the listing begins. If
you want a leading Form Feed, just type a Y here.

Macro Listing Option - 1=.IALL, 2=.XALL, 4=.SALL (2) -

 This controls the macro listing default setting. Read the
descriptions of .LALL, .XALL, and .SALL to see if you want to
change the default setting. You can change it by typing a 1, 2,
or 4.

Generate 6 Significant in M-Rel instead of 7 (N) -

 The Microsoft REL format supports 7 significant characters
for globals and externals. However, most software that utilizes
M-Rel format truncates to 6 characters (Fortran compatibility ?).
You have your choice of 6 or 7 characters of significance.

Print 16-bit values in logical direction (Y) -

 This controls the byte order (in the listing) for 16-bit
values when printed. If you prefer to see the bytes in the order
generated, use an N. The default case prints the high byte
first.

Suppress Lines Containing PAGE, TITLE, etc (N) -

 This controls the listing of lines that contain the pseudo-
ops PAGE, TITLE, and .PRINTX. A Y here will cause those lines to
be suppressed from any listing.

Page D-2 Z80ASM User's Manual Copyright (c) 1984 PLR Systems

Z80 Relocating Macro Assembler CONFIG Utility

Disable Interrupts (N) -

 Z80ASM was written to take full advantage of the Z80
architecture and instruction set for reasons that are self-
explanatory when you see it run. Certain systems that are 'Z80'
CP/M machines do not provide a true Z80 environment. If your
system is interrupt driven and destroys any Z80 registers on
interrupts, a Y here will cause Z80ASM to disable interrupts
whenever any special Z80 registers are in use. Interrupts will
always be enabled during any system calls.

Force Form Feed before Summary (N) -

 This allows you to control the summary printing. By
default, the summary will be printed at the end of the listing.
You can force the summary to be placed at the top of a new page
by putting a Y here.

Form Feed at End of Listing (Y) -

 This causes Z80ASM to issue a form feed at the end of all
listing output. This usually makes it easier for you to remove
the listing from your printer, and also sets the top-of-form for
the next listing without wasting any paper. The Form Feed can be
eliminated by typing an N here.

Time and Date in Listing (N) -

 If you are running on a system that provides time & date,
Z80ASM provides the ability to have the time and date printed on
the title line of your listing. To enable this, put a Y here.

Special TIME & DATE Items

 The next three questions may be ignored if you 1) answered H
to the above question, or 2) you are running under an operating
system that provides MP/M compatible time and date (CP/M Plus,
TurboDos, etc.).

 If your system supports time and date, but not the system
call 105 to return time and date, you can still have Z80ASM
utilize your time and date information. The information must
either be in the same form as that supplied by CP/M Plus:

 DW DATE ;Number of days since 1 Jan 1978
 ;with 0001 being 1 Jan 1978
 DB HOURS ;Hour of the day in BCD
 DB MINUTES ;Minutes of the hour in BCD

or it must be in ASCII, 16 chars max, terminated by a -1.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page D-3

Z80 Relocating Macro Assembler CONFIG Utility

If you can get your time and date formatted like that somewhere
in your system, you can just tell CONFIG that you are supplying
the address of the data. If you need to have some code executed
to retrieve the time and date, Z80ASM will optionally call a
subroutine for you, you just supply the address of the routine.
The routine must emulate the System Call 105, that being, Z80ASM
will supply an address in DE where you should store one of the
above structures. All Z80 registers are available for your use,
just be careful not to get too deep on the stack (you have 30
bytes to play with). Then lastly you need to tell Z80ASM which
structure type you are returning.

Take advantage of multi-sector I/O (Y) -

 System call 12 tells Z80ASM whether multi-sector I/O is
available or not, at least usually. Certain 'CP/M compatible'
operating systems return a code saying they are CP/M Plus or MP/M
compatible, but they don't support multi-sector I/O. If that is
your case, you will need to answer N here.

Use Statement #'s instead of Line # in file (N) -

 This allows you to choose between two different line-
numbering schemes. Statement #'s are numbers assigned as the
listing is generated. This causes numbers to be generated in
numerical order even when macro's are expanded, include files
processed, etc. Line #'s are the actual line number in the
source file being processed. These reset to 1 on include files.
macro expansions, etc, are fully nestable, and refer to the line
in the item being processed. These are the numbers used in
error messages. Statement numbers can be more meaningful for
cross-references using include files and macros.

Print Line/Stmt # first on listing line (N) -

 This allows you to select the order of certain items in the
listing line. A Y causes the line number to be listed first,
whereas an N causes the hexadecimal values to be listed first.
Suit yourself!

Number of errors on which to abort (100) -

 This option provides a limit on the number of errors Z80ASM
will process before aborting the current assembly. A value of 0
will cause this option to be ignored.

Page D-4 Z80ASM User's Manual Copyright (c) 1984 ?LR Systems

Z80 Relocating Macro Assembler CONFIG Utility

Number of lines per console page (0=no paging) (24) -

 This provides paging for all console output, pausing for
operator intervention after N lines. A value of zero causes this
option to be ignored.

Number of bytes (1-60) per line of HEX output (32) -

 This option allows you to specify the number of bytes per
line when generating a .HEX file. Certain emulators, PROM
programmers, etc are very particular about the format for 'Intel-
Standard' HEX format.

Close & ReOpen file in 2-pass mode (N) -

 This option is used for CP/M 'lookalikes' that don't like
the way Z80ASM optimizes disk I/O. Molecular Computer users may
need to set this flag when assembling files larger than one
extent.

Require : if label not in column one (Y) -

 This option allows full free form source lines. Be careful
if you select N, because mistyped opcodes will be treated as
labels, and no error generated.

Conditionals test only bit 0 (DRI compatibility) (N) -

 This option, when set to N, causes 0 to be treated as false,
and anything else as true. If this option is set to Y, then if
bit 0 is off, that is false, bit 0 on is true, and all other bits
are ignored.

Suppress IF parameter errors in 1 pass mode (N) -

 This option will disable the reporting of IF operand errors
in one-pass mode. IF operands containing forward references can
cause different sections of code to be assembled on different
passes, which will go undetected in one pass mode.

Ignore leading space & tab chars in IF <> types (Y) -

 This option controls the significance of spaces and tabs in
IF string parameter processing. IFB < > will return FALSE if
this option is set to N (M80 compatible, space is not blank), but
will return TRUE if set to Y.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page D-5

Z80 Relocating Macro Assembler CONFIG Utility

Fill unused space with 0 (N) or FF (Y) in COM (N) -

 This option is used to define the fill byte used in filling
uninitialized space when generating a COM file.

Generate Empty External Chains (M-REL) (N) -

 Normally symbols that are declared external but never
referenced are not entered into the REL file. This option forces
generation of all externals. Some compilers expect the assembler
to strip unneeded externals, while others select library options
by simply declaring labels external.

ASEG Default to 0H instead of 100H (N) -

 The first ASEG encountered defaults to 100H for standard
CP/M program generation. This can be changed to 0 for M80
compatability.

ORG <ABSOLUTE> Yields Offset in Current Space (N) -

 Normally an implied ASEG is performed when ORG is passed an
absolute parameter. This option allows that absolute number to
be treated as an offset in the current address space.

 The next series of prompts allow you to change the
extensions looked for or generated on several different files.
To change the extension, just type a new one, otherwise type a
CR.

Extension for source File (Z80) -

 This is the source file being assembled. The default case
looks for an extension of Z80. You can change it to ASM, MAC,
SRC, or whatever you like.

Extension for relocatable File (REL) -

 This is the extension generated when you are creating a
binary output file in relocatable mode.

Extension for absolute binary File (COM) -

 This is the extension generated when you are creating a
binary output file in absolute core-image mode.

Page D-6 Z80ASM User's Manual Copyright (c) 1984 SLR Systems

Z80 Relocating Macro Assembler CONFIG Utility

Extension for Intel-Hex format file (HEX) -

 This is the extension generated when you are creating a
binary output file in absolute Intel-hex (/H) mode.

Extension for listing file (LST) -

 This is the extension used when generating a listing file to
disk.

Extension for temporary file ($$1) -

 This is the extension used for the temporary file generated
if the intermediate code overflows in one-pass mode.

Extension for /I file (SUB) -

 This is the extension looked for on the specified indirect
command file.

Default Ext for MACLIB file (MAC) -

 This is the default extension used for filenames given in a
MACLIB or INCLUDE statement.

Leader String to send to printer (1B,51,) -

 This allows you to specify a setup string of up to 8 bytes
to be sent to the printer before a listing is started. You can
use it to select compressed print, one-pass print, or just blank
it out with an FF. Note that this string is sent only if you use
the /P option, not a drive type of 'Y'.

Trailer String to send to printer (1B,4E,) -

 This allows you to undo whatever you did above. Again, this
is only done with a /P.

At this point, CONFIG writes the changes the specified file.
That's it!

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page D-7

Z80 Relocating Macro Assembler ASCII Table

APPENDIX E - ASCII TABLE

ASCII CHARACTER SET

The ASCII character set consists of single codes in the range of
0 to 7FH inclusive. This is always nice to have around when you
need it.

BIT 6
I 5
T 4
 3210

 C
 O
ROW L

0
 0
 0
 0

0
 0
 1
 1

0
 1
 0
 2

0
 1
 1
 3

1
 0
 0
 4

1
 0
 1
 5

1
 1
 0
 6

1
 1
 1
 7

 0000 0 NUL DLE SP 0 @ P ` p
 0001 1 SOH DC1 ! 1 A Q a q
 0010 2 STX DC2 " 2 B R b r
 0011 3 ETX DC3 # 3 C S c s
 0100 4 EOT DC4 $ 4 D T d t
 0101 5 ENQ NAK % 5 E U d u
 0110 6 ACK SYN & 6 F V f v
 0111 7 BEL ETB ' 7 G W g w
 1000 8 BS CAN (8 H X h x
 1001 9 HT EM) 9 I Y i y
 1010 10 VF SUB * : J Z j z
 1011 11 VT ESC + ; K [k {
 1100 12 FF FS , < L \ l |
 1101 13 CR GS - = M] m }
 1110 14 SO RS . > N ^ n ~
 1111 15 SI US / ? O _ o DEL

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page E-1

Z80 Relocating Macro Assembler Limited Warranty

 APPENDIX F - LIMITED WARRANTY

SLR Systems disclaims any warranty as to this product.

 SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED, AND ANY
 IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE WHICH EXCEEDS THE FOREGOING
 WARRANTY IS HEREBY DISCLAIMED BY SELLER AND EXCLUDED
 FROM ANY AGREEMENT.

Buyer exclusively waives its rights to any consequential damages,
loss or expense arising in connection with the use of or the
inability to use its goods for any purpose whatsoever.

No warranty shall be applicable to any damages arising out of any
act of the Buyer, his employees, agents, patrons or other
persons.

The remedies set forth herein are exclusive and the liability of
Seller to any contract or sale or anything done in connection
therewith, whether in contract, in tort, under any warranty, or
otherwise, shall not, except as expressly provided herein, exceed
the price of the equipment or part on which said liability is
based.

No employee or representative of Seller is authorized to change
this warranty in any way or grant any other guarantee or
warranty.

Z80ASM User's Manual Copyright (c) 1984 SLR Systems Page F-1

	Z80ASM User's Guide
	Copyright Notice
	Introduction
	Features

	Table of Contents
	Running the Assembler
	Efficiency Hints

	Command Line Options
	A: Absolute Mode
	C: Console Output
	D: Disable Uppercase Conversion
	E: Enable Uppercase Conversion
	F: Full Listing Mode
	H: Binary Output in HEX Format
	I: Indirect Command File Input
	K: Kill Console I/O
	L: One-Pass Listing Mode
	M: Force Relocatable Mode
	N: Start Over with New Options
	P: Listing to LST: Device
	Q: Abort Interactive Command
	R: Select Relocatable Operation, SLR Format
	S: Generate Symbol Table
	T: Specify Time and Date for Listings
	U: Declare Undefined Symbols as Externals
	X: Select Crossreference Generation
	Y: Delete XREF Option
	6: Select 6 Significant Chars, Implies M Option
	7: Select 7 Significant Chars, Implies M Option

	Assembler Runtime Control
	Source Line Format
	Line #
	Label
	Operation
	Parameters
	Comments

	Expressions
	TYPE
	Numbers
	Special Symbols
	Strings

	Relocatability
	Pseudo-Operations
	Program Counter Maintenance
	ABS, ASEG
	ORG
	CSEG, PROG, REL
	DATA, DSEG
	COM, COMMON
	.PHASE
	.DEPHASE

	Data Definition and Generation
	DB, DEFB, DEFM
	DW, DEFW
	DS, DEFS
	EXT, EXTRN, EXTERNAL
	ENT, ENTRY, GLOBAL, PUBLIC
	.ACCEPT
	DEFC, DC
	DEFZ

	Conditional Assembly
	IF, COND, IFT
	IFE, IFF
	ENDIF, ENDC
	ELSE
	IF0
	IF1
	IF2
	IFDEF
	IFNDEF
	IFIDN
	IFDIF
	IFB
	IFNB

	Macro Facility
	REPT
	IPRC
	IRP
	MACRO
	LOCAL
	EXITM
	INCLUDE, $INCLUDE
	MACLIB
	Dummy Parameter Evaluation
	Parameter Evaluation Rules

	Listing Controls
	TITLE
	SUBTTL, $TITLE
	PAGE, EJECT, $EJECT, *EJECT
	LIST, .LIST
	.XLIST
	MTLIST
	NMTLIST
	CLIST, .LFCOND
	.SFCOND
	.TFCOND
	.LALL
	.SALL
	.XALL

	Miscellaneous Pseudo-Ops
	END
	NAME
	.REQUEST
	.Z80
	.CREF
	.XCREF
	.COMMENT
	.PRINTX
	.RADIX

	Error Message Summary
	Zilog Z80 Instruction Set
	Intel HEX File Format
	Config Utility
	ASCII Table
	Limited Warranty

