
SLRNK
Super-Linker

USER'S GUIDE

Copyright (c) 1984 by
SLR Systems

1622 North Main Street
Butler, PA 16001 U.S.A.

(412) 282-0864

COPYRIGHT NOTICE

This software product is distributed for the use of the original
purchaser only, and no license is granted herein to copy,
duplicate, sell or otherwise distribute to any other person,
firm, or entity. Furthur, this software product and all forms of
the program are copyrighted by SLR Systems, and all rights are
reserved.

TRADEMARKS

Wherever referred to throughout this manual, CP/M and Z80 are
registered trademarks of Digital Research and Zilog, Inc.,
respectively.

SLRNK Super-Linker Introduction

INTRODUCTION

SLRNK is a powerful linking loader for Z80-based CP/M systems.
It takes relocatable binary information in either Microsoft or
SLR Systems format from a disk file, resolves external and entry
point references, and stores the output in memory for execution
or outputs it to a disk file.

FEATURES

1) One pass operation

2) Supports both Microsoft and SLR Systems formats
 simultaneously.

3) Relocatable format allows extended math on externals
 and relocatable symbols

4) Up to 15 different data, program, and common areas per
 module

5) High speed operation

6) Optional alphabetized symbol table

7) Binary output to memory or disk (COM or HEX)

8) Supports SUBMIT-type indirect-command files

Page L-2 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Table Of Contents

TABLE OF CONTENTS

Introduction 2

 Features 2

Table of Contents 3

Running the Linker 4

Linker Operation 5

Command Line Options 8

Slash Option Summary 12

Error Message Summary 13

Appendix A

 SLR Format Description 16

Appendix B

 Microsoft Format Description 20

Appendix C

 SLRIB - SuperLibrarian 25

Appendix D

 CONFIG Utility 28

Appendix E

 Warranty 30

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-3

SLRNK Super-Linker Running The Linker

RUNNING THE LINKER

To run the linker, type

 A>SLRNK [COMMAND][,COMMAND]

where the brackets are not really typed, but what is enclosed in
them is optional. If no COMMANDS are given on the initial
command line, SLRNK will prompt for a command line with a percent
(%) sign. SLRNK allows as many commands to be given as will fit
on a 128 character line. Commands are separated by a comma.
Note that input from the prompt is via the Read Console Buffer
system call, so that commands may be passed through a SUBMIT
file. However, there is a better way...

COMMANDS are defined as follows

[<Filename>][<switch>]

where <Filename> is the filename to be used in the command
 (optional depending on <switch>).

 <switch> is zero or more command modifiers consisting
 of a slash (/), a letter, and optional
 parameters effecting the use of the
 <Filename> if present.

For example, to link a file named TEST.REL, and create an output
file TEST.COM, the command line would be

 A>SLRNK TEST,TEST/N/E

Before we go into detail about the COMMANDS and <switch>es, let's
get an overview of the actual workings of SLRNK.

Page L-4 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Linker Operation

LINKER OPERATION

This Linker is a high-speed memory based linker. It reads
relocatable files, resolves any external-global references, and
produces an output file. The processes involved can be quite
complex; this text is not a tutorial. The reader is assumed to
be familiar with relocatability, address spaces, etc. Here we
describe how SLRNK views these items.

SLRNK recognizes three separate address spaces, these being
PROGram space, DATA space, and COMmon space. In the default
case, these items are loaded one after the other for each module.

LOADING AREA

SLRNK takes up room in RAM from 100H to about 2000H. Above that
area go the symbol table pointers and various buffers. From the
top of available memory (TPA) down, the symbol table itself is
built, along with temporary file control blocks, disk buffers,
etc. Each symbol takes up 6 bytes plus the number of characters
in the symbol. If you have a 52k TPA and are linking files
producing 200 symbols with 8 characters each, you will have about
40K for your program.

When the first byte of code is loaded, SLRNK sets up a logical
address space in available RAM at which to load the code. All
code must be able to fit into the logical space. For instance,
if you load code at location 0, the maximum address at which you
can load code is around A000. If the lowest address loaded is
6000H, then you can probably load code clear up to FFFFH. Note
that in either case you may ADDRESS areas (such as uninitialized
data) outside this range, you just cannot load actual code there.

LOADING ORDER

If no loading directives are given, SLRNK links things starting
at 103H. For SLR Format files, the relocatable sections are
loaded as follows:

 1) The program section from the module is loaded first.

 2) The data section from the module is loaded next.

 3) All common sections from the module not already defined
 are loaded next.

 4) Repeat the above steps for the remaining modules.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-5

SLRNK Super-Linker Linker Operation

The above defaults may be modified at any time to change the way
things are loaded. You may force the program, data and common
sections to all be loaded in the above manner but at a location
other than 0103H with the /A option. For example:

 /A: 5700

forces all of the areas to be loaded from 5700H.

The areas can be separated and loaded in particular places using
the /P, /D, and /C directives to origin the program, data, and
common areas in a similar manner. For example, if you are
burning a bootstrap routine in FROM at location OFOOOH, and want
to use RAM at 0000 for data:

 /P:F000/D:0

will do that for you.

Note that in using the /A option, SLRNK knows that the different
spaces need to be loaded one after the other. But if you use any
/P, /D, or /C options to relocate a section or two, SLRNK will
not keep track of collisions. For example, if you want to put
your PROG section at 100H, and your DATA and COMMON areas at
8000H, you should use

 /A:8000,/P:100

to perform that. If you instead used the following

 /P:100,/D:8000,/C:8000

YOU WILL NOT GET THE DESIRED RESULTS! In this case, the DATA and
COMMON areas will be load ON TOP OF EACH OTHER instead of
consecutively. Be sure to think through what you really want to
do.

INPUT FILES

An input file is specified by the name of the file, without the
extention .REL followed by any optional "slash" directives. The
extension is always .REL. Any options immediately following the
file name apply to that file. For example:

 INIT/P:100/D:8000

causes SLRNK to set the program load counter to 100H, the data
load counter to 8000H and process the file INIT.REL.

After opening the input file, SLRNK then determines whether the
file is Microsoft format or SLR Systems format.

Page L-6 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Linker Operation

LINKING

SLRNK performs several steps when it loads a module:

 1) The format type is determined.

 2) Any entry points are added to the symbol table, and an
 error message is output if the symbol was already
 defined.

 3) The sizes of program, data and common areas are
 defined.

 4) The code is loaded.

 5) Any external symbols are resolved if possible,
 otherwise they are added to the symbol table.

 6) If verbose mode has been selected, the module name,
 type, and location of program and data sections are
 displayed on the console. If the module is in SLR
 Format and the assembly time and date is available,
 that will also be displayed.

 7) If an error was detected at assembly time for this
 module, then the message *ERR* is displayed on the
 console.

Let's talk in more detail about the command line options.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-7

SLRNK SuperLinker Command Line Options

COMMAND LINE OPTIONS

A <Filename> given as a command will be processed as a .REL file
in most cases. Any trailing <switch> operators are processed
first before the file is read. If any of the <switch> options
take an optional <filename> as part of their syntax, then the
<Filename will be used only as part of the switch option.

SLASH OPTIONS

The operation of the linker is controlled by commands consisting
of a slash '/' followed by a letter with optional parameters. In
this section we describe the slash options, their syntax and
function.

 /A:HEXNUM

 The A option is used to select a base loading address
 for ALL address spaces. The address spaces from each
 following module will be loaded one after the other
 starting at this address. SLRNK performs an implied
 /A:103 at startup and reset.

 /C:HEXNUM

 The C option is used to select a separate loading base
 for any common blocks that follow (not already
 referenced in a module). Common blocks will be loaded
 one after the other starting at HEXNUM, until another
 /C or /A is encountered.

 /D:HEXNUM

 The D option is used to select a separate loading base
 for any DATA segments that follow. This is useful in
 applications where PROG areas are to be stored in PROM
 and DATA areas are in RAM. Note that this affects only
 DATA or DSEG spaces. Common blocks will still be
 loaded according to the last /A or /C.

Page L-8 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Command Line Options

 /E

 The E option signifies end-of-link. Several things
 happen when this option is given. First of all, the
 symbol table is checked for undefined references. If
 any are found, then any .REQUEST libraries are
 searched. If there are still undefined globals, a /U
 option is performed, and the END operation is aborted.
 Otherwise the finish table is processed. Depending on
 the lowest address loaded, several things can occur.
 If the lowest address is 100H, the code is assumed to
 be a standard COM file. If the lowest address is 103H
 (the default initial load address), a jump instruction
 is placed at the beginning (100H) jump to the defined
 start address. If the lowest address is 108H, the
 following sequence is placed in front of the code

 ORG 100H

 LD HL,(6) ;CP/M TOP OF MEMORY
 DEC HL
 LD SP.HL ;SET TOP OF STACK
 JP STARTADR ;DECLARED WITH AN END STATEMENT

 Any other LOWEST address is assumed to be a nonstandard
 CP/M file, and cannot be relocated in memory, it must
 be written to disk.
 At this point, if a file name was given using the
 /N option, the file is created, and the code is written
 to it. Note that nonstandard /N files will have the
 extension CIM and will start with the lowest address
 loaded in your program.

 /F

 This option FORCES any undefined globals to a value of
 zero. This is useful when you get all your modules
 loaded, but you can't write the file because of
 undefined references. This should be used sparingly,
 but is very nice when the undefined labels are non-
 critical and you don't want to go back, define,
 assemble, and re-link.

 /G

 This option is useful only for CP/M applications. The
 sequence is essentially the same as the /E case except
 that instead of writing the output to disk, the code is
 relocated and executed.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-9

SLRNK SuperLinker Command Line Options

 FILENAME/H

 Name the output HEX file. This option defines the name
 to be used at /E time. It also sets the output type to
 an INTEL format HEX file. For COM or CIM output, use
 /N instead.

 FILENAME/I

 This option is used to call an indirect command file.
 An indirect command file is merely a disk file with an
 EXT of SUB that contains valid linker command lines.
 This is very useful for development of programs that
 are composed of many modules. It is similar to a
 submit file, except that it is nestable, can be used
 within a submit file, and is much faster.

 <FILENAME>/M

 This option generates a symbol table map either on the
 console, or, if a filename is given, it is sent to a
 file FILENAME.SYM. Symbols are listed, value first,
 three per line. The output is optionally compatible
 with ZSID.

 FILENAME/N

 NAME the output file. This option defines the name to
 be used at /E time. It also sets the output type to a
 binary image COM or CIM type. For Hex output, use /H
 instead.

 /O:SYMBOL:HEXNUM

 ORIGIN a symbol. This option is used to force the
 definition of any symbols. For instance, to declare a
 global symbol CPM (or define one already referenced)
 with a value of 243Hex, you would use the command:

 /O:CPM:243

 /P:HEXNUM

 Define PROGRAM space base pointer. This option defines
 the loading base for subsequent PROG or CSEG areas.
 Any DATA and COMMON spaces will be loaded at their
 previous /A,/D, or /C locations.

Page L-10 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super Linker Command Line Options

 /Q

 QUIT Linking. Aborts linker operation. Same as ^C.

 /R

 RESET the linker. This option resets the linker to its
 initial state. All options are set back to their
 default values, and the load area is cleared. The same
 as ending operation and reloading the linker.

 FILENAME/S

 SEARCH mode load. Directs the linker to search the
 specified file, and load only the module(s) that
 contain entry points that have already been referenced
 but are currently undefined.

 <FILENAME>/U

 List UNDEFINED symbols. This option is identical to
 the /M option except only undefined symbols are listed.

 /V

 Select VERBOSE operation. This option causes SLRNK to
 give a bit more detailed information about what it is
 doing. It causes input lines from indirect command
 files to be echoed on the console. It also causes, for
 each module loaded, the module name, module type (M for
 microsoft format and S for SLR Systems format) along
 with the size and location of any DATA and PROG areas
 loaded. If an S-Rel module contains a time and date
 stamp, the time and date are displayed also.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-11

SLRNK SuperLinker Slash Option Summary

SUMMARY OF COMMAND LINE OPTIONS

 /A:HEXNUM Select common loading base for ALL types

 /C:HEXNUM Select loading base for COMMON types

 /D:HEXNUM Select loading base for DATA types

 /E END of link, generate output

 /F FORCE all undefined symbols to Zero

 /G End of link, GO execute program

 FILENAME/H Declare name of HEX output file

 FILENAME/I Call INDIRECT command file

 <FILENAME>/M Generate symbol table MAP

 FILENAME/N Declare NAME of COM output file

 /O:SYMBOL:HEXNUM ORIGIN a symbol

 /P:HEXNUM Select loading base for PROG types

 /Q QUIT. Abort. Stop already.

 /R RESET linker

 FILENAME/S SELECTIVE Search mode

 <FILENAME>/U Generate UNDEFINED symbol table

 /V Select VERBOSE operation

Page L-12 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Error Message Summary

ERROR MESSAGE SUMMARY

Throughout the Linking process, SLRNK can discover several error
conditions and notify you about them. This is a list of possible
error messages and their meanings. For each error, SLRNK
supplies as much information as possible about the source of the
error, including any applicable filename, module name, load
address and symbol name.

 Abort - Disk Full!

 Error encountered in writing file to disk, like no
 room. Remove some unnecessary files and try again.

 Bad Chain

 While trying to resolve a linked list (chain) of
 addresses referencing the given ENTRY point, an address
 was found that is out of range. Usually caused by
 loading code over top of previously loaded code,
 thereby contaminating the linked list. Check your load
 address commands. Quite often caused by having an ORG
 100H in a module, then loading other relative modules
 with /A still at 103H.

 Bad Drive

 The given drive specifier is invalid.

 Bad External Number

 An External was referenced (S-REL) with a higher number
 than how many are defined. Can occur if more than 255
 externals are used in one module.

 Bad File

 Again a corrupt file, linker is confused.

 Bad Hex Digit

 Something other than a valid Hex digit was found after
 the colon in your slash option.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-13

SLRNK SuperLinker Error Message Summary

 Bad Type 4

 A Special Item type 4 (M-REL) was encountered that is
 undefined. Should not occur unless M-REL file is
 corrupt.

 Byte Out Of Range

 This can occur in several places (Release 1.0 will tell
 at what address), depending on the instruction
 involved. For relative jumps involving externals, and
 also indexed addressing, the value generated must lie
 between -128 and +127. For Bit #'s involving
 relocatable expressions, the bit must be 0-7. For RST
 instructions, 0, 8, 10h, etc, are required. Finally,
 for IM instructions, the result must be 0, 1, or 2.
 Something other than these was calculated.

 Can't Open File

 Self-explanatory, the given filename could not be found
 with the .REL extension or .SUB extension, depending on
 command.

 Common Undefined

 This means that your relocatable file (M-REL) is
 corrupt, in that a common block was referenced before
 it was defined. Certain M-REL 'compatible' assemblers
 generate output that does that.

 Duplicate Symbol

 The entry point encountered (defined in this module)
 was previously defined in another module. Change
 somebody's name.

 File Name Too Long

 The filename given has more than 8 letters in it. CP/M
 filenames are limited to 8 characters preceding the
 extension.

 File Name?

 The /E command must write code to disk, but no filename
 has been defined with the /N or /H options.

Page L-14 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Error Message Summary

 Finish Error

 Probably a linker bug. Something illegal was found in
 the finish table, which is built by the linker. Try to
 determine what may have led up to that and call us.

 Line Too Long

 The input line read from your indirect command file was
 longer than 128 characters. Each line must be less
 than 128 characters to prevent overflowing internal
 buffers.

 Must Origin At 100H

 The /G option is valid only when the lowest loaded
 location is 100h, 103h, or 108h.

 OUT OF MEMORY !

 In allocating space for the current module. SLRNK ran
 out of room. SLRNK+ builds your output file
 'virtually' on disk at this point so that the code
 won't need to be resident in RAM at all times, but with
 SLRNK, you are out of memory.

 : Expected

 A colon is expected after certain slash options.
 Either a colon is missing, or something previous
 confused the scanner.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-15

SLRNK SuperLinker Appendix A - SLR Format

Appendix A - SLR Format

SLR Systems Relocatable Format for object modules is described in
this section. This format provides the mechanism for writing and
assembling modules whose actual execution addresses are not known
until "link-time". The format is byte-oriented, meaning that
each item or token in the format starts and stops on a byte
boundary. The format may be generated and processed one byte at
a time, rather than one bit at a time.

There are two types of items available, absolute load and special
items. The first byte of the item determines the item type. A
number in the range of 00H through 7FH signifies an absolute load
item. That correctly implies that 80H through FFH signify
special items.

Absolute load item:

A number in the. range of 00H through 7FH signifies an absolute
load item. If N is the first byte of the item, then the next N+1
bytes are loaded starting at the current load pointer. For
example:

 00H,CDH : a zero means load the next byte absolute.
 7FH,..... : a 7F means load the next 128 bytes.

Special Item:

If the first byte of an item is 80H or bigger, then it signifies
the start of a special item. Special items can be from one to
actually infinity in length. This section describes the special
items.

If the first byte is from 80H to 0DFH, then it is a special type
1 item.

TYPE 1

Special Type 1 items are determined by breaking the byte into two
nibbles, 4 bits each. The most significant 4 bits determine the
Type 1 operation, and the second nibble determines the specifics.
There are sixteen data types supported by SLR format. Types are
determined by the lower nibble in relevent cases. The Data types
are defined as follows:

 Type Description
 0 This is an absolute 16-bit word, i.e., no
 relocation is involved. Its value is defined in
 the next two bytes.

 1 This is a program relative 16-bit word. Its value
 is determined by adding the current PROGRAM base
 to the next two bytes.

Page L-16 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK SuperLinker Appendix A - SLR Format

 2 This is a data relative 16-bit word. Its value is
 determined by adding the current DATA base to the
 next two bytes.

 3-E Types 3 through 14 are common relative 16-bit
 words. They are determined by the appropriate
 COMMON base to the next two bytes. With this
 format, up to 12 common blocks may be referenced
 in a single module.

 F Type 15 is a special type used to reference an
 external value. If the next byte is not a zero,
 then it determines the external referenced. Up to
 255 Externals may be declared using the FC option,
 and thereafter be referenced by number. If the
 defining byte is zero, then the external symbol
 ASCII name follows, terminated by a -1.

This table describes the Type 1 operations.

Upper Nibble Description of Action

 8 Generate a 16-bit word defined by the lower nibble and
 the next byte(s).

 9 Place the 16-bit word defined by the lower nibble and
 the next byte(s) onto the expression stack.

 A Set the load pointer to the 16-bit value defined by the
 lower nibble and the next byte(s).

 B Perform the operation defined by the lower nibble on
 data in the expression stack. See operation table.

 C External + Offset. Add the given 16-bit value to the
 current memory location after all externals are
 resolved.

 D External - Offset. Subtract the given 16-bit value
 from the current memory location after all externals
 have been resolved.

 E E0-FF are special items. Each has its own definition,
 and they are defined as follows:

 E0 Pop 16-bit word from expression stack. This is
 used to generate a 16-bit word from an expression.
 If the result is defined, the value is stored when
 the E0 is encountered. If the expression cannot
 yet be resolved, the stack is stored in the FINISH
 table, to be resolved later.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-17

SLRNK SuperLinker Appendix A - SLR Format

 E1 Pop Byte from stack. Similar to E0, this
 generates an 8-bit number from the expression
 stack, if possible. Otherwise the stack is saved
 in the FINISH table. The 16-bit value popped off
 the stack must be in the range of -128 to +255 or
 an error message will be generated.

 E2 Pop Relative byte from stack. Identical to E1
 except that the value must be in the range of -128
 to 127. This is used for JR instructions and
 offsets from index registers.

 E3 Generate Byte from external. Similar to 8F, this
 takes the external number from the next byte
 (unless it is zero), pushes it on the stack, and
 performs an E1.

 E4 Generate Relative byte from external. Same as a
 9F code followed by an E2.

 E5 Chain address. Currently not used.

 E6 & E7 - Reserved for expansion.

 E8 Generate BIT-type instruction. This causes SLRNK
 to pop a bit # from the stack, range-check it,
 shift it around and OR it with the next byte to
 generate the proper BIT, RES, or SET instruction.

 E9 Generate an RST instruction. Used when an RST
 instruction contained an external reference.
 Restart address is on the top of the expression
 stack.

 EA Generate an IM instruction. Valid numbers are 0,
 1, & 2.

 EB through F5 - Reserved for expansion

 F6 Assembly Time Error. Syntax error was detected
 during assembly.

 F7 Time and date. The next 4 bytes match the time
 and date structure returned by CP/M call 105 at
 assembly time.

 F8 Chain External. Currently not used.

 F9 Module Definition. Includes module name (0 to 16
 characters followed by a -1), Program area size in
 bytes, and Data area size in bytes. This must be
 the first record in the relocatable file.

Page L-18 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Appendix A - SLR Format

 FA Entry Definition. Includes Entry point name (0 to
 16 characters followed by a -1), and the 3-byte
 value defining it (first byte is type, next two
 are the offset). Any Entry definitions must
 immediately follow the Module Definition record.

 FB Common Definitions. Common definitions appear
 after any Entry Definitions. The definition
 includes the common name (0 to 16 characters
 terminated by a -1) followed by the block length.

 FC External Declaration. Declares an external
 reference by name (0 to 16....). Each external is
 assigned a number from 1 to 255 in the order in
 which they are declared, and they are referenced
 later by number.

 FD Select Library. Declares a library file (0 to
 16...) to be searched in case of undefined
 externals. Multiple libraries may be selected,
 they will be searched in the order selected.

 FE End of module. Declares the end of the current
 module. The next three bytes declare an optional
 starting address.

 FF End of file. That is it for that file.

OPERATION TABLE

 B0 Add top of stack to next on stack
 B1 Subtract top from next on stack
 B2 Unsigned Multiply top and next
 B3 Unsigned Divide top of stack into next on stack
 B4 MOD function, do B3 and save remainder
 B5 Bitwise AND operation
 B6 Bitwise OR operation
 B7 Bitwise XOR operation
 B8 SHR Shift right inserting zeros
 B9 SHL Shift left inserting zeros
 BA Bitwise NOT operation
 BB NEG (Unary minus) operation
 BC Extract HIGH byte
 BD Extract LOW byte
 BE not used
 BF Leader byte for more operations
 00 EQ
 01 NE
 02 LT
 03 LE
 04 GT
 05 GE

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-19

SLRNK Super-Linker Appendix B - M-REL Format

Appendix B - M-REL FORMAT

Microsoft Relocatable Format for object modules is described in
this section. This format provides the mechanism for writing and
assembling modules whose Actual execution addresses are not known
until 'link-time'. The format is bit-oriented, meaning that byte
boundaries are not observed. The format must be read and written
one bit at a time, which makes it very slow to process (unless
you are using SLRNK). Unlike the reasons given for its design,
it also usually takes up more room than a comparable S-Rel file.

There are many types of items available in this format which we
will divide into 'absolute byte' and 'other'. The items are
better called tokens. The first bit of the token determines its
type, as far as our above division is concerned. If the first
bit is a 0, the token is an absolute byte, consisting of the next
8 bits. Otherwise, the token is an 'other'.

'other'

 The next two bits are needed to furthur define the token.
The two bits are interpreted as follows:

 00 Special 'other'

 01 Program Relative value. The next sixteen bits are
 added to the current PROG base and then loaded as
 two absolute bytes.

 10 Data Relative value. The next sixteen bits are
 added to the current DATA base and then loaded as
 two absolute bytes.

 11 Common Relative value. The next sixteen bits are
 added to the current COMMON base and then loaded
 as two absolute bytes.

Special 'other'

The Special 'other' tokens are furthur defined by reading
the next 4 bits to determine the exact token referenced. The
tokens may have parameters with them in the form of what we will
call PARAM-A and/or PARAM-B.

Before defining the tokens, let's define the PARAM fields.

Page L-20 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Appendix B - M-REL Format

PARAM-A

PARAM-A is an 18-bit item just like defined above except that if
the first two bits are 00, then it is considered an absolute
item. (Note that for M80-L80 compatibility, these items are not
always treated as the format defines. Those particular places
will be mentioned at the appropriate token definition.)

PARAM-B

PARAM-B is a variable length item defined as follows. The next
three bits determine the number of 8-bit bytes that follow. This
is used for global names, etc. Note that the name could be 0-7
characters in length. Actually, if you assume no zero length
labels (?) you could use the 0 value to mean a length of 8
characters. This is exactly what Z80ASM and SLRNK do, except in
the case of common names (Fortran uses zero length for blank
common name). You will see under token #4 why you are still
limited to only 7 characters.

Special 'other' continued...

The 4 bits discussed above determine which of the following 16
tokens we are processing. The tokens are grouped nicely.

The token types 0 through 4 have a PARAM-B only.

 0 Entry Symbol. This token is used to tell a linker that
 the given symbol is defined somewhere in this module-
 It should appear before any actual code in the file.
 Linkers use this during /S searches to determine
 whether or not to load the module.

 1 Select Common Block. This selects the common block to
 be referenced in any subsequent 11(one-one) two bit
 patterns.

 2 Program Name. This is the module name. For reference
 purposes only.

 3 Request Library. This is the library name to be
 searched at the end of the link for any undefined
 externals.

 4 Extended Token. This item opens up a whole list of
 items, mostly reverse polish expression items. The
 particular item is defined by the first character or
 two. See 'SPECIAL SPECIAL"

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-21

SLRNK Super-Linker Appendix B - M-REL Format

The token types 5 through 7 have a PARAM-A and a PARAM-B.

 5 Define COMMON size. This item declares a common block
 name and its size. Note that the two-bit type in the
 PARAM-A is ignored.

 6 Chain External. This item declares an external symbol
 name and the address in this module where it was last
 referenced. This is a pointer in a chain. The
 location pointed to also contains a pointer to another
 place that referenced that external. In other words,
 externals are referenced as a linked list. This guy
 just points to the head of the list. The end of the
 list is a zero.

 7 Define Entry Point. This item declares a global symbol
 and its value.

The token types 8 through 14 have a PARAM-A only.

 8 External - Offset. This token means subtract this
 PARAM-A item from the value stored at the current load
 pointer after all externals, etc have been resolved.
 Used by Microsoft for relative calls and jumps in their
 8086 cross-assembler.

 9 External + Offset. This token means add this PARAM-A
 item to the value stored at the current load pointer
 after all externals, etc have been resolved. Used when
 you say LD HL,EXTERNAL+5 ;

 10 Define Data Size. Defines the size of the DATA section
 of the module. SLRNK requires this item to appear
 before any reference is made to a DATA load item.

 11 Set Load pointer. PARAM-A is the new load location.

 12 Chain address. PARAM-A is the head of the chain.
 Replace everybody in the linked list with the value of
 the current load pointer. Used by one-pass compilers
 for forward referenced labels. Works just like item 7,
 the end of the chain is a zero.

 13 Define Program Size. Defines the size of the PROG
 section of the module. SLRNK requires this item to
 appear before any reference is made to a PROG load
 item. **Note** the two bit data type is ignored by
 SLRNK but must be set to a 01 to work with L80 (?).

 14 End of module. This signifies the end of the current
 module. The PARAM-A is the start address if not zero.
 Note This token forces the input stream to a byte
 boundary...

Page L-22 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Appendix B - M-REL Format

The token type 15 takes no parameters.

 15 End of file. Finish processing.

You guessed it, the end of module and end of file are both
necessary, but the end of file appears only after the last module
in the file (for library file support).

'SPECIAL SPECIAL'

The special type 4 operations are quite varied. The first
character of the PARAM-B field defines another subdivision. The
ones that SLRNK recognizes are

 'A' 41H ;the byte that follows defines an
 arithmetic operation (defined below).

 'B' 42h ;the bytes that follow (up to 7...)
 define an external symbol whose value is
 to be pushed on the expression stack.

 'C' 43H ;the next three bytes that follow define
 a 16-bit value to be pushed on the
 stack. The first byte (only bits 0 & 1)
 define the two-bit type as above.

Other identifiers can be there, but that is all that SLRNK
recognizes. For instance, COBOL compiler has some undocumented
overlaying functions, etc.

Arithmetic Operations

The next byte after the "A" defines one of several operations.
Some are Microsoft standard, some have been added by SLR Systems
(extensions). The extensions are followed by an '*'.

 Operator Definition

 01 Pop Byte. A byte result is popped off the
 expression stack.

 02 Pop Word. A 16-bit result is popped off the
 expression stack.

 03 High Byte. Place the high byte of the TOS
 (Top of Stack) on the stack.

 04 Low Byte. Place the low byte of the TOS on
 the stack.

 05 Bitwise NOT. Place the 1's complement of TOS
 on the stack

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-23

SLRNK Super-Linker Appendix B - M-REL Format

 06 Negate. Place the 2's complement of TOS on
 the stack.

 07 Subtract. Subtract top two items on stack.
 Place result back on stack.

 08 Addition. Add the top two items, placing
 result on stack.

 09 Multiply (unsigned).

 0A Divide (unsigned).

 0B Modulo (unsigned remainder).

 10 * Bitwise AND.

 11 * Bitwise OR.

 12 * Bitwise XOR.

 13 * Bitwise SHR.

 14 * Bitwise SHL.

 15 * BIT-Type Instruction. The next byte (9-bits)
 is the mask for the instruction, TOS is the
 bit #.

 16 * RST Instruction. TOS is the Restart address.

 17 * IM Instruction. TOS is the interrupt mode.

 19 * EQ.

 1A * NE.

 1B * LT.

 1C * LE.

 ID * GT.

 1E * GE.

Page L-24 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Appendix C - SLRIB Librarian

APPENDIX C - SLRIB LIBRARIAN

SLRNK has the ability, by using the /S option, to scan a file
that contains multiple REL modules, extracting only those modules
which are needed, modules that contain definitions of undefined
globals. If you have several often used subroutines, much disk
space can be saved by combining the separate REL modules into a
single library file. Also, since most of the time required to
link a small separate module is the file opening and reading, it
is much faster to open one library file and scan it than to open
several separate files.

The real point here is not to justify the use of libraries, but
to tell you how to use SLRIB, the librarian that helps you create
and maintain SLR-Format libraries.

The SLRIB command line is much like SLRNK in that the command can
be given on one line, or SLRIB will prompt you. To build a
library called FLOATS.REL from several modules, this is a
possible command sequence:

 A>SLRIB FLOATS/N,FMULT,FDIV,FSUB,FADD,/E

SLRIB will read the files FMULT.REL, FDIV.REL, PSUB.REL, and
FADD.REL, and combine them into one file called FLOATS.REL.

That is the simplest brute-force method of building a library.
Once you have your library built, you will probably want to
update it later. SLRIB provides convenient ways to do that also.

SLRIB Options

SLRIB Options are invoked much like SLRNK options; they are slash
options. Here we describe the separate options.

 /A ASK. This option causes SLRIB to prompt the console
 before including a particular module in an operation.
 For instance, if you want a new library called FLOAT
 consisting of the modules in FLOATS except for FDIV,
 you could use the line:

 A>SLRIB FLOAT/N.FLOATS/A,/E

 SLRIB will read FLOATS.REL and prompt you for the
 inclusion of each module:
 FMULT (Y/N)?Y
 FDIV (Y/N)?N
 FSUB (Y/N)?Y
 FADD (Y/N)?Y

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-25

SLRNK Super-Linker Appendix C - SLRIB Librarian

 You answer the prompt with a single letter, Y or N.

 /E END. This option causes SLRIB to end its operation.
 If no library was being built, SLRIB just goes away.
 If a library was being built, it is renamed to the
 name previously specified with the /N command.

 /I INDIRECT. Like SLRNK, this option causes SLRIB to
 read its commands from the preceding file name.SUB.

 /L LIST. This option causes SLRIB to list names, and
 program and data area sizes of each module in the
 selected list.

 /M MAP. This option forces an implied /L, and also lists
 all of the GLOBAL symbols defined and EXTERNAL symbols
 referenced in each module.

 /N NAME. This option names the new library. It can also
 specify a drive on which to place the library. Note
 that the new library is not given this name until /E
 time.

 %C:NEWLIB/N

 /Q QUIT. This is similar to /E except that any library
 file in the process of being built is deleted from
 disk.

 /R RESET. Identical to /Q, except that SLRIB is still
 running.

 /U UNDEFINED. This option causes SLRIB to scan the given
 module list and report any possible BACKWARD
 references, items that might not be defined in one
 pass through the library.

MODULE LISTS

What is a module list? It is a way of selecting particular
modules from a library file.

We have already seen the /A method of selecting modules from a
library file. Let's be more specific about module specification.

To include all the modules in a given library file, just use the
library file name:

 %FLOATS

includes all the modules contained in FLOATS.REL in the module
list.

Page L-26 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Appendix C - SLRIB Librarian

If you wanted to include just the module FMULT, you could use a
/A and only answer Y to FMULT (Y/N)?, but there is an easier way.

 %FLOATS<FMULT>

causes just the module FMULT to be included in the module list.

To include everything but FMULT, you could use

 %FLOATS<FDIV..>

which means include FDIV and everything after it.

 %FLOATS<..FSUB> includes everything up to FSUB
(inclusive).

 %FLOATS<FADD,FDIV> includes FADD and FDIV, in that
order.

These options make it very easy to update an existing library.
To replace the module FSUB in FLOATS with an updated version in a
file called FSUB1.

 A>SLRIB FLOATS/N,FLOATS<..FDIV>,FSUB1,FLOATS<FADD>,/E

will accomplish just that. SLRIB will prompt you before it
destroys the original copy of FLOATS.REL.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-27

SLRNK Super-Linker Appendix D - Config Utility

APPENDIX D - CONFIG UTILITY

The configuration utility CONFIG.COM provided with SLRNK allows
easy customization of SLRNK to a particular set of requirements.
This section briefly describes its use.

To run CONFIG, type

 A>CONFIG SLRNK.COM

where SLRNK.COM is the name of the file that you want to
customize.

CONFIG will respond with a series of questions requesting flag
settings or item values. In parentheses is the current value of
that item. You can modify the current value by typing a new one,
or the item can be left the same by just entering a CR. The
process can be aborted by typing a ^C. After the last question
is answered, CONFIG will write out the new settings.

Now we will explain each question that CONFIG asks.

Disable Interrupts (N) -

 SLRNK was written to take full advantage of the Z80
architecture and instruction set for reasons that are self-
explanatory when you see it run. Certain systems that are 'Z80'
CP/M machines do not provide a true Z80 environment. If your
system is interrupt driven and destroys any Z80 registers on
interrupts, a Y here will cause SLRNK to disable interrupts
whenever any special Z80 registers are in use. Interrupts will
always be enabled during any system calls.

Take advantage of multi-sector I/O (Y) -

 System call 12 tells SLRNK whether multi-sector I/O is
available or not, at least usually. Certain 'CP/M compatible'
operating systems return a code saying they are MP/M compatible,
but they don't support multi-sector I/O. If that is your case,
you will need to answer N here.

Use TAB as separator bet-ween Symbols in .SYM (Y) -

 SLRNK can create a symbol table on disk for use in many
applications. If you need ZSID compatibility, Y causes TABs to
be used as separators between Symbols, and also truncates symbols
to a maximum length of 15 characters. An N causes spaces to be
used between symbols, and they can be the full length. Some
emulators require the spaces.

Page L-28 SLRNK User's Manual Copyright (c) 1984 SLR Systems

SLRNK Super-Linker Appendix D - Config Utility

Number of bytes per line of HEX output (33) -

This option allows you to specify the number of bytes per
line when generating a .HEX file. Certain emulators, PROM
programmers, etc. are very particular about the format for the
'Intel Standard' HEX format.

The default extensions for various files can also be modified.
They are self explanatory.

CONFIG - SLRIB

CONFIG may also be used to set options in SLRIB. To use it just
type

 A>CONFIG SLRIB.COM

where SLRIB.COM is the name of your librarian file.

The questions available are either self-explanatory or the same
as described above.

SLRNK User's Manual Copyright (c) 1984 SLR Systems Page L-29

	SLRNK User's Guide
	Copyright Notice
	Introduction
	Features

	Table of Contents
	Running the Linker
	Linker Operation
	Loading Area
	Loading Order
	Input Files
	Linking

	Command Line Options
	Slash Options
	/A:HEXNUM (Loading Base for ALL)
	/C:HEXNUM (Loading Base for COMMON)
	/D:HEXNUM (Loading Base for DATA)
	/E (End of Link)
	/F (Force undefined to Zero)
	/G (Relocate and Execute Code)

	FILENAME/H (Name of Output HEX File)
	FILENAME/I (Call Indirect Command File)
	<FILENAME>/M (Generate Symbol Table)
	FILENAME/N (Name of Output File)
	/O:SYMBOL:HEXNUM (Origin a Symbol)
	/P:HEXNUM (Program Space Base Pointer)
	/Q (Quit Linking)
	/R (Reset the Linker)
	FILENAME/S (Search Mode Load)
	<FILENAME>/U (List Undefined Symbols)
	/V (Select Verbose Operation)
	Summary of Command Line Options

	Error Message Summary
	SLR Format
	Absolute Load Item
	Special Item

	M-REL Format
	SLRIB Librarian
	SLRIB Options
	Module Lists

	Config Utility

